Skip to main content
Log in

Performance of different normal dispersion fibers to generate triangular optical pulses

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

To identify the best possible normally dispersive optical fibers (NDF) in view of efficient triangular pulse (TP) generation, the optimization of several passive NDFs are reported in this work. The study shows that TPs, which sustain over a reasonably good fiber length, can be generated at shorter length when higher values of dispersion and nonlinearity are considered. A suitable NDF with high value of dispersion and nonlinearity is chosen and renamed as normally dispersive highly nonlinear fiber (ND-HNLF). The fiber parameters and pulse conditions are optimized here in such a way that the pulse maintains its triangular shape throughout a longer length in transient state. A detail analysis is performed on generation and stability of triangular pulses through the ND-HNLFs in absence and in presence of gain. When compared, the ND-HNLF with gain is found to be preferable due to their lower input power requirement and lesser broadening of the output triangular pulses whereas passive ND-HNLF performs better in terms of formation of TPs at shorter length and sustainability of those pulses over moderately larger fiber length. It is also shown that the suggested fibers, competent enough to generate stable TPs can be potentially applied in the area of optical signal doubling and a new fiber based approach is mentioned as well for saw-tooth pulse formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, New York (2001)

    MATH  Google Scholar 

  • Bale, B.G., Boscolo, S.: Impact of third-order fibre dispersion on the evolution of parabolic optical pulses. J. Opt. 12, 015202 (2010)

    Article  ADS  Google Scholar 

  • Bhamber, R.S., Latkin, A.I., Boscolo, S., Turitsyn, S.K.: All-optical TDM to WDM signal conversion and partial regeneration using XPM with triangular pulses. Proc. ECOC 4–5, 1–2 (2008)

    Google Scholar 

  • Boscolo, S., Latkin, A.I., Turitsyn, S.K.: Passive nonlinear pulse shaping in normally dispersive fiber systems. IEEE J. Quantum Electron. 44, 1196–1203 (2008)

    Article  ADS  Google Scholar 

  • Boscolo, S., Finot, C.: Nonlinear pulse shaping in fibers for pulse generation and optical processing. Int. J. Opt. 2012, 1–14 (2012)

    Google Scholar 

  • Bose, N., Ghosh, D., Mukherjee, S., Basu, M.: Nonlinear pulse reshaping in a designed erbium-doped fiber amplifier with a multicladded index profile. Opt. Eng. 52, 086104 (2013)

    Article  ADS  Google Scholar 

  • Bose, N., Mukherjee, S., Basu, M.: Parabolic and semiparabolic pulse dynamics in optical fibers. Opt. Eng. 54, 016108 (2015)

    Article  ADS  Google Scholar 

  • Boyd, R.W.: Nonlinear Optics. Academic Press, San Diego (2008)

    Google Scholar 

  • Clarke, A.M., Williams, D.G., Roelens, M.A.F., Eggleton, B.J.: Reconfigurable optical pulse generator employing a Fourier-domain programmable optical processor. J. Lightwave Technol. 28, 97–103 (2010)

    Article  ADS  Google Scholar 

  • Finot, C., Provost, L., Petropoulos, P., Richardson, D.J.: Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device. Opt. Express 15, 852–864 (2007)

    Article  ADS  Google Scholar 

  • Finot, C., Wu, L.: Influence of the initial phase profile on the asymptotic self-similar parabolic dynamics. J. Nonlinear Opt. Phys. Mater. 18, 709–721 (2010)

    Article  ADS  Google Scholar 

  • Finot, C., Boscolo, S.: Design rules for nonlinear spectral compression in optical fibers. J. Opt. Soc. Am. B 33, 760–767 (2016)

    Article  ADS  Google Scholar 

  • Fleming, J.W.: Material and mode dispersion in GeO2·B2O3·SiO2 glasses. J. Am. Ceram. Soc. 59, 503–507 (1976)

    Article  ADS  Google Scholar 

  • Fleming, J.W.: Material dispersion in lightguide glasses. Electron. Lett. 14, 326–328 (1978)

    Article  ADS  Google Scholar 

  • Hirano, M., Nakanishi, T., Okuno, T., Onishi, M.: Silica-based highly nonlinear fibers and their application. IEEE J. Sel. Top. Quantum Electron. 15, 103–113 (2009)

    Article  Google Scholar 

  • Hirooka, T., Nakazawa, M., Okamoto, K.: Bright and dark 40 GHz parabolic pulse generation using a picosecond optical pulse train and an arrayed waveguide grating. Opt. Lett. 33, 1102–1104 (2008)

    Article  ADS  Google Scholar 

  • Iakushev, S.O., Shulika, O.V., Sukhoivanov, I.A.: Passive nonlinear reshaping towards parabolic pulses in the steady-state regime in optical fibers. Opt. Commun. 285, 4493–4499 (2012)

    Article  ADS  Google Scholar 

  • Iakushev, S.O., Shulika, O.V., Sukhoivanov, I.A., Fesenko, V.I., Andrés, M.V., Sayinc, H.: Formation of ultrashort triangular pulses in optical fibers. Opt. Express 22, 29119–29134 (2014)

    Article  ADS  Google Scholar 

  • Kashiwagi, K., Hasegawa, A., Kurokawa, T.: High speed wavelength switching using saw-tooth pulse generated by optical pulse synthesizer. In: Proceedings CLEO (2013)

  • Latkin, A.I., Turitsyn, S.K.: Semi-analytical description of parabolic pulse generation in the normal-dispersion fibre amplifiers. Proc. ICTON 2006, 259–262 (2006)

    Google Scholar 

  • Latkin, A.I., Boscolo, S., Bhamber, R.S., Turitsyn, S.K.: Doubling of optical signals using triangular pulses. J. Opt. Soc. Am. B 26, 1492–1496 (2009)

    Article  ADS  Google Scholar 

  • Li, J., Ning, T., Pei, L., Jian, W., You, H., Chen, H., Zhang, C.: Photonic-assisted periodic triangular-shaped pulses generation with tunable repetition rate. IEEE Photon. Technol. Lett. 25, 952–954 (2013)

    Article  ADS  Google Scholar 

  • Li, W., Wang, W.T., Sun, W.H., Wang, W.Y., Zhu, N.H.: Generation of triangular waveforms based on a microwave photonic filter with negative coefficient. Opt. Express 22, 14993–15001 (2014)

    Article  ADS  Google Scholar 

  • Miyamoto, T., Tanaka, M., Kobayashi, J., Tsuzaki, T., Hirano, M., Okuno, T., Kakui, M., Shigematsu, M.: Highly nonlinear fiber-based lumped fiber Raman amplifier for CWDM transmission systems. J. Lightwave Technol. 23, 3475–3483 (2005)

    Article  ADS  Google Scholar 

  • Nguyen, D., Piracha, M.U., Mandridis, D., Delfyett, P.J.: Dynamic parabolic pulse generation using temporal shaping of wavelength to time mapped pulses. Opt. Express 19, 12305–12311 (2011)

    Article  ADS  Google Scholar 

  • Parmigiani, F., Petropoulos, P., Ibsen, M., Richardson, D.J.: Pulse retiming based on XPM using parabolic pulses formed in a fiber Bragg grating. IEEE Photon. Technol. Lett. 18, 829–831 (2006a)

    Article  ADS  Google Scholar 

  • Parmigiani, F., Finot, C., Mukasa, K., Ibsen, M., Roelens, M.A.F., Petropoulos, P., Richardson, D.J.: Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating. Opt. Express 14, 7617–7622 (2006b)

    Article  ADS  Google Scholar 

  • Parmigiani, F., Ibsen, M., Ng, T.T., Provost, L., Petropoulos, P., Richardson, D.J.: An efficient wavelength converter exploiting a grating-based saw-tooth pulse shaper. IEEE Photon. Technol. Lett. 20, 1461–1463 (2008)

    Article  ADS  Google Scholar 

  • Parmigiani, F., Petropoulos, P., Ibsen, M., Almeida, P.J., Ng, T.T., Richardson, D.J.: Time domain add–drop multiplexing scheme enhanced using a saw-tooth pulse shaper. Opt. Express 17, 8362–8369 (2009)

    Article  ADS  Google Scholar 

  • Petropoulos, P., Ibsen, M., Ellis, A.D., Richardson, D.J.: Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating. IEEE J. Lightwave Technol. 19, 746–752 (2001)

    Article  ADS  Google Scholar 

  • Simmons, J.H., Potter, K.S.: Optical Materials. Academic Press, San Diego (2000)

    Google Scholar 

  • Sukhoivanov, I.A., Iakushev, S.O., Shulika, O.V., Díez, A., Andrés, M.: Femtosecond parabolic pulse shaping in normally dispersive optical fibers. Opt. Express 21, 17769–17785 (2013)

    Article  ADS  Google Scholar 

  • Verscheure, N., Finot, C.: Pulse doubling and wavelength conversion through triangular nonlinear pulse reshaping. Electron. Lett. 47, 1194–1196 (2011)

    Article  Google Scholar 

  • Wang, H., Latkin, A.I., Boscolo, S., Harper, P., Turitsyn, S.K.: Generation of triangular-shaped optical pulses in normally dispersive fibre. J. Opt. 12, 035205 (2010)

    Article  ADS  Google Scholar 

  • Weiner, A.M.: Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1939–1960 (2000)

    Article  ADS  Google Scholar 

  • Wetzel, B., Bongiovanni, D., Kues, M., Hu, Y., Chen, Z., Trillo, S., Dudley, J.M., Wabnitz, S., Morandotti, R.: Experimental generation of Riemann waves in optics: a route to shock wave control. Phys. Rev. Lett. 117, 073902 (2016)

    Article  ADS  Google Scholar 

  • Yan, L.: All-optical signal processing for ultrahigh speed optical systems and networks. J. Lightwave Technol. 30, 3760–3769 (2012)

    Article  ADS  Google Scholar 

  • Ye, J., Yan, L., Pan, W., Luo, B., Zou, X., Yi, A., Yao, S.: Photonic generation of triangular-shaped pulses based on frequency-to-time conversion. Opt. Lett. 36, 1458–1460 (2011)

    Article  ADS  Google Scholar 

  • Zhang, F., Ge, X., Pan, S.: Triangular pulse generation using a dual-parallel Mach–Zehnder modulator driven by a single-frequency radio frequency signal. Opt. Lett. 38, 4491–4493 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The authors are thankful to the Science and Engineering Research Board (SERB), Govt. of India, for providing financial support under research project EMR/2014/000261. The first author is grateful to the Department of Science and Technology (DST), Govt. of India for the inspire fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousumi Basu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, D., Bose, N., Ghosh, D. et al. Performance of different normal dispersion fibers to generate triangular optical pulses. Opt Quant Electron 49, 294 (2017). https://doi.org/10.1007/s11082-017-1135-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1135-z

Keywords

Navigation