Skip to main content
Log in

Mixing of Gaussian pulses by nonlinear periodic semiconductor structures

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The nonlinear scattering of two non-collinear Gaussian pulses with different central frequencies and lengths, incident on the periodic stacks of semiconductor layers, is analyzed in the self-consistent problem formulation, taking into account the dynamics of carriers. It is demonstrated that the waveform evolution in passive weakly nonlinear semiconductor periodic structure is strongly affected by the parameters of incident pulses. The obtained solutions have revealed the effect of stack spectral characteristics on the properties of the emitted waveforms of combinatorial frequencies. Significant increase of the amplitude of scattered waveform is observed as central frequencies of pump pulses are close to the plasma frequencies of semiconductor layers. It is remarkable that collision frequencies of the carriers in semiconductor materials strongly influence the mixing of incident pulses in the stacks. The enhanced amplitudes of the generated waveforms have been demonstrated numerically for the semiconductors with high collision frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Balakin, A.V., Bushuev, V.A., Koroteev, N.I., Mantsyzov, B.I., Ozheredov, I.A., Shkurinov, A.P., Boucher, D., Masselin, P.: Enhancement of second-harmonic generation with femtosecond laser pulses near the photonic band edge for different polarizations of incident light. Opt. Lett. 24, 793–795 (1999)

    Article  ADS  Google Scholar 

  • Bass, F.G., Bulgakov, A.A.: Kinetic and electrodynamic phenomena in classical and quantum semiconductor superlattices. Nova Science, New York (1997)

    Google Scholar 

  • Bertolotti, M.: Wave interactions in photonic band structures: an overview. J. Opt. A Pure Appl. Opt. 8, S9–S32 (2006)

    Article  ADS  Google Scholar 

  • Beyer, O., Maxein, D., Buse, K., Sturman, B., Hsieh, H.T., Psaltis, D.: Investigation of nonlinear absorption processes with femtosecond light pulses in lithium niobate crystals. Phys. Rev. E 71, 056603 (2005)

    Article  ADS  Google Scholar 

  • Bhat, N.A.R., Sipe, J.E.: Optical pulse propagation in nonlinear photonic crystals. Phys. Rev. E 64, 056604 (2001)

    Article  ADS  Google Scholar 

  • Blombergen, N.: Nonlinear optics: a lecture note. Benjamin, New York-Amsterdam (1965)

  • Centini, M., Sibilia, C., D’Aguanno, G., Bertolotti, M., Scalora, M., Bloemer, M.J., Bowden, C.M.: Reflectivity control via second-order interaction process in one-dimensional photonic band-gap structures. Opt. Commun. 184, 283–288 (2000)

    Article  ADS  Google Scholar 

  • Centini, M., Scalora, M., D’Aguanno, G., Sibilia, C., Bertolotti, M., Bloemer, M.J., Bowden, C.M., Haus, J.W.: Efficient nonlinear infrared parametric generation in one-dimensional photonic band gap structures. Opt. Commun. 189, 135–142 (2001)

    Article  ADS  Google Scholar 

  • Koroteev, N.I., Magnitskii, S.A., Tarasishin, A.V., Zheltikov, A.M.: Compression of ultrashort light pulses in photonic crystals: when envelopes cease to be slow. Opt. Commun. 159, 191–202 (1999)

    Article  ADS  Google Scholar 

  • Nielsen, N.C., Kuhl, J., Schaarschmidt, M., Förstner, J., Knorr, A., Koch, S.W., Khitrova, G., Gibbs, H.M., Giessen, H.: Linear and nonlinear pulse propagation in a multiple-quantum-well photonic crystal. Phys. Rev. B 70, 075306 (2004)

    Article  ADS  Google Scholar 

  • Novitsky, D.V.: Compression of an intensive light pulse in photonic-band-gap structures with a dense resonant medium. Phys. Rev. A 79, 023828 (2009)

    Article  ADS  Google Scholar 

  • Novitsky, D.V.: Pulse trapping inside a one-dimensional photonic crystal with relaxing cubic nonlinearity. Phys. Rev. A 81, 053814 (2010)

    Article  ADS  Google Scholar 

  • Novitsky, D.V.: Spectral transformations in the regime of pulse self-trapping in a nonlinear photonic crystal. Phys. Rev. A 84, 053857 (2011)

    Article  ADS  Google Scholar 

  • Novitsky, D.V.: Effects of pulse collisions in a multilayer system with noninstantaneous cubic nonlinearity. J. Opt. 15, 035206 (2013)

    Article  ADS  Google Scholar 

  • Roppo, V., Centini, M., Sibilia, C., Bertolotti, M., de Ceglia, D., Scalora, M., Akozbek, N., Bloemer, M.J., Bowden, C.M., Haus, J.W., Kosareva, O.G., Kandidov, V.P.: Role of phase matching in pulsed second-harmonic generation: walk-off and phase-locked twin pulses in negative-index media. Phys. Rev. A 76, 033829 (2007)

    Article  ADS  Google Scholar 

  • Scalora, M., Bloemer, M.J., Manka, A.S., Dowling, J.P., Bowden, C.M., Viswanathan, R., Haus, J.W.: Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structure. Phys. Rev. A 56, 3166–3174 (1997)

    Article  ADS  Google Scholar 

  • Scalora, M., Mattiucci, N., D’Aguanno, G., Larciprete, M.C., Bloemer, M.J.: Nonlinear pulse propagation in one-dimensional metal-dielectric multilayer stacks: ultrawide bandwidth optical limiting. Phys. Rev. E 73, 016603 (2006)

    Article  ADS  Google Scholar 

  • Scalora, M., Vincenti, M.A., de Ceglia, D., Roppo, V., Centini, M., Akozbek, N., Bloemer, M.J.: Second- and third-harmonic generation in metal-based structures. Phys. Rev. A 82, 043828 (2010)

    Article  ADS  Google Scholar 

  • Shramkova, O.V.: Nonlinear wave scattering by stacked layers of semiconductor plasma. Eur. Phys. J. D 68, 43 (2014). doi:10.1140/epjd/e2014-40483-2

    Article  ADS  Google Scholar 

  • Shramkova, O.V., Schuchinsky ,A.G.: Nonlinear scattering by anisotropic dielectric periodic structures. Adv. OptoElectron. 2012, Article ID 154847 (2012)

  • Shutov, I.V., Chirkin, A.S.: Consecutive high-order harmonic generation and formation of subfemtosecond light pulses in aperiodical nonlinear photonic crystals. Phys. Rev. A 78, 013827 (2008)

    Article  ADS  Google Scholar 

  • Vlasov, R.A., Smirnov, A.G.: Compression of femtosecond light pulses by one-dimensional photonic crystals with two-component relaxing nonlinearity. Phys. Rev. E 61, 5808–5813 (2000)

    Article  ADS  Google Scholar 

  • Wen, S., Xiang, Yu., Dai, X., Tang, Z., Su, W., Fan, D.: Theoretical models for ultrashort electromagnetic pulse propagation in nonlinear metamaterials. Phys. Rev. A 75, 033815 (2007)

    Article  ADS  Google Scholar 

  • Ye, W.N., Brzozowski, L., Sargent, E.H., Pelinovsky, D.: Stable all-optical limiting in nonlinear periodic structures. III. Nonsolitonic pulse propagation. J. Opt. Soc. Am. B 20, 695–705 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author expresses her gratitude to Dr. A. G. Schuchinsky for fruitful discussion of a number of results. This work has been performed in the framework of the project NHQWAVE (MSCA-RISE 691209) supported by the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Shramkova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shramkova, O.V. Mixing of Gaussian pulses by nonlinear periodic semiconductor structures. Opt Quant Electron 49, 289 (2017). https://doi.org/10.1007/s11082-017-1122-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1122-4

Keywords

Navigation