Skip to main content
Log in

Focusing behavior of 2-dimensional plasmonic conical zone plate

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A conical configuration plasmonic zone plate based on Fresnel zones made up of Au thin film slits is proposed for focusing in the free space with visible illumination. The surface plasmons enable propagation of radiating modes to distances equal to several wavelengths of the illumination field. Through numerical simulations, the conical structure found to yield focal spot beating the diffraction barrier encountered by conventional focusing elements. The focal spot size measured as full-width at half-maximum (FWHM) is observed to be as small as 0.31 times the illumination wavelength at the focal distance of 8 wavelength. Moreover, the simple design rules make it possible to predict and control the focal distances accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Attwood, D.: Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  • Born, M., Wolf, E.: Principle of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge University Press, New York (2003)

    Google Scholar 

  • Fu, Y., Zhou, W., Lim, L.E.N., Du, C.L., Luo, X.G.: Plasmonic microzone plate: Superfocusing at visible regime. Appl. Phys. Lett. 91, 061124 (2007)

  • Genet, C., Ebbesen, T.W.: Light in tiny holes. Nature 445, 39–46 (2007)

    Article  ADS  Google Scholar 

  • Ishii, S., Shalaev, V.M., Kildishev, A.V.: Holey-metal lenses: sieving single modes with proper phases. Nano Lett. 13, 159–163 (2013). doi:10.1021/nl303841n

    Article  ADS  Google Scholar 

  • Johnson, P.B., Christy, R.W.: Optical constants of noble metals. Phys. Rev. B. (Condens. Matter Mater. Phys.) 6, 4370–4379 (1972)

  • Kim, S., Lim, Y., Kim, H., Park, J., Lee, B.: Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings. Appl. Phys. Lett. 92, 013103 (2008)

  • Kirz, J.: Phase zone plates for X-rays and the extreme UV. J. Opt. Soc. Am. 64, 301–309 (1974)

    Article  ADS  Google Scholar 

  • Lu, X.Y., Huang, Y., Tang, Z.M., Hong, Q.Y., Lu, Z.Y., Zhong, Y.P., Ye, W.H., Liu, L.Y.: Use of surface plasmon resonance (SPR) sensor for real time in situ study of adsorption of proteins onto surface of polyurethane. Chin. J. Biomed. Eng. 22, 164–170 (2003)

    Google Scholar 

  • Luk’yanchuk, B., Zheludev, N.I., Maier, S.A., Halas, N.J., Nordlander, P., Giessen, H., Chong, C.T.: The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010). doi:10.1038/nmat2810

    Article  ADS  Google Scholar 

  • Minin, I.V., Minin, O.V.: Experimental verification 3D subwavelength resolution beyond the diffraction limit with zone plate in millimeter wave. Microw. Opt. Technol. Lett. 56, 2436–2439 (2014). doi:10.1002/mop.28614

    Article  Google Scholar 

  • Minin, I.V., Minin, O.V.: Diffractive Optics and Nanophotonics. Springer International Publishing, Cham (2016)

    Book  Google Scholar 

  • Mote, R.G., Chu, H.S., Bai, P., Li, E.P.: Compact and efficient coupler to interface hybrid dielectric-loaded plasmonic waveguide with silicon photonic slab waveguide. Opt. Commun. 285, 3709–3713 (2012). doi:10.1016/j.optcom.2012.04.037

    Article  ADS  Google Scholar 

  • Mote, R.G., Yu, S.F., Ng, B.K., Zhou, W., Lau, S.P.: Near-field focusing properties of zone plates in visible regime—New insights. Opt. Express 16, 9554–9564 (2008)

    Article  ADS  Google Scholar 

  • Mote, R.G., Zhou, W., Fu, Y.: Beaming of light through depth-tuned plasmonic nanostructures. Optik (Stuttg.) 121, 1962–1965 (2010)

    Article  ADS  Google Scholar 

  • Nomura, W., Ohtsu, M., Yatsui, T.: Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion. Appl. Phys. Lett. 86, 181108 (2005)

  • Novotny, L., Hecht, B.: Surface plasmons. In: Principles of Nano-Optics, pp. 378–418. Cambridge University Press, Cambridge (2006)

  • Oulton, R.F., Sorger, V.J., Genov, D.A., Pile, D.F.P., Zhang, X.: A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2, 496–500 (2008). doi:10.1038/nphoton.2008.131

    Article  Google Scholar 

  • Pacheco-Peña, V., Minin, I.V., Minin, O.V., Beruete, M.: Comprehensive analysis of photonic nanojets in 3D dielectric cuboids excited by surface plasmons. Ann. Phys. 528, 684–692 (2016a). doi:10.1002/andp.201600098

    Article  Google Scholar 

  • Pacheco-Peña, V., Minin, I.V., Minin, O.V., Beruete, M.: Increasing surface plasmons propagation via photonic nanojets with periodically spaced 3D dielectric cuboids. Photonics 3, 10 (2016b). doi:10.3390/photonics3010010

  • Radko, I.P., Bozhevolnyi, S.I., Evlyukhin, A.B., Boltasseva, A.: Surface plasmon polariton beam focusing with parabolic nanoparticle chains. Opt. Express 15, 6576–6585 (2007). doi:10.1364/OE.15.006576

  • Raether, H.: Surface plasmons on smooth and rough surfaces and on gratings. Springer-Verlag, Berlin (1988)

    Book  Google Scholar 

  • Ritchie, R.H.: Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  • Sato, S., Matsubara, H., Hashizume, M., Matsui, Y., Shiokawa, S.: Fabrication and fundamental characteristics of fiber optic surface plasmon sensor. Trans. Inst. Electr. Eng. Jpn. E 117, 627–632 (1997)

    Google Scholar 

  • Shi, H., Du, C., Luo, X.: Focal length modulation based on a metallic slit surrounded with grooves in curved depths. Appl. Phys. Lett. 91, 93111–93113 (2007)

    Article  Google Scholar 

  • Sorger, V.J., Ye, Z., Oulton, R.F., Wang, Y., Bartal, G., Yin, X., Zhang, X.: Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales. Nat. Commun. 2, 331 (2011). doi:10.1038/ncomms1315

  • Wang, J., Zhou, W.: Subwavelength beaming using depth-tuned annular nanostructures. J. Mod. Opt. 56, 919–926 (2009). doi:10.1080/09500340902812094

    Article  ADS  Google Scholar 

  • Zeng, B., Gao, Y., Bartoli, F.J.: Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters. Sci. Rep. 3, 2840 (2013). doi:10.1038/srep02840

  • Zhaowei, L., Steele, J.M., Srituravanich, W., Yuri, P., Cheng, S., Xiang, Z.: Focusing surface plasmons with a plasmonic lens. Nano Lett. 5, 1726–1729 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by Mendeleev scientific fund of Tomsk State University, project 8.2.08.2017, by Tomsk Polytechnic University Competitiveness Enhancement Program Grant, Project Number TPU CEP_INDT_76\2017 and IRCC, IIT Bombay via Seed Grant: Spons/ME/I14079-1/2014.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rakesh G. Mote or Igor V. Minin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mote, R.G., Minin, O.V. & Minin, I.V. Focusing behavior of 2-dimensional plasmonic conical zone plate. Opt Quant Electron 49, 271 (2017). https://doi.org/10.1007/s11082-017-1108-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1108-2

Keywords

Navigation