Skip to main content
Log in

A new modeling approach for amorphous silicon passivated front contact for thin silicon solar cells

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Thermal oxide (SiO2) and hydrogen-rich amorphous silicon (a-Si:H) interlayer at the front metal-silicon contact of thin silicon solar cells has been optimized based on a theoretical model. An analytical solution to the complete set of equations has been provided to highlighted the potential use and implications of the a-Si:H/SiO2 as a passivation coating at the front surface in crystalline silicon solar cells. The simple analytical expressions of the emitter reverse saturation current density and the photocurrent density were also obtained taking into account bulk recombination velocity and non-uniform doping profile. An optimum a-Si:H/SiO2 interlayer thicknesses were noted to enhance the collection of light-generated free carriers, which improves the efficiency of the short wavelength quantum. This is achieved by a drastic reduction in the effective recombination at the emitter upper boundary, a properly primarily responsible for the decrease in the emitter saturation current density. The findings indicated that the emitter region should be treated as an active layer because an optimum a-Si:H/SiO2 interlayer thicknesses at the front contact (W n,1 = 5 nm and δ = 14 Å) give an improvement that can reach 3.6 mA/cm2 for the photocurrent density, 63 mV for the open-circuit voltage, and 3.95% for the cell efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

q :

Electron charge

V T :

Thermal voltage

W n,1 (W n,2):

a-Si:H (c-Si) emitter thickness

W P (W):

Base (depletion layer) thickness

δ :

Interfacial oxide thickness

S p (S n ):

Front (back) surface recombination velocity

S iR (S iL ):

Hole recombination velocity at c-Si emitter (a-Si:H) side

T iR (T iL ):

Interface blocking factor on the c-Si (a-Si:H) side

S amor (S mono):

Effective recombination velocity relative to the a-Si:H (c-Si) region

S peff,R (S peff,L):

Effective recombination velocity at the right (left) of the oxide layer

p0,1(x) (p0,2(x)):

Hole concentration at equilibrium in the a-Si:H (c-Si)

α 1,λ (α 2,λ ):

a-Si:H (c-Si) absorption coefficient

ϕ0λ :

Photon flux density

R λ :

c-Si reflectance

D peff,1 (D peff,2):

Average hole diffusion coefficient in the a-Si:H (c-Si) emitter

L peff,1 (L peff,2):

Average hole diffusion length in the a-Si:H (c-Si) emitter

τ peff,1 (τ peff,2):

Average hole lifetime in the a-Si:H (c-Si) emitter

u L1 :

Light-generated normalized excess hole density in the a-Si:H emitter

\(J_{ph}^{{{\text{n}},a{\text{ - Si}}}} \left( \lambda \right)\) :

Light-generated hole current density in the a-Si:H emitter

\(J_{ph}^{\text{n}} \left( \lambda \right)\) :

Light-generated hole current density in the c-Si emitter

\(J_{ph}^{\text{p}} \left( \lambda \right)\) :

Light-generated hole current density in the base region

\(J_{ph}^{\text{w}} \left( \lambda \right)\) :

Light-generated hole current density in the depletion layer

\(J_{ph}^{{{\text{a}} - {\text{c}}}} \left( \lambda \right)\) :

Total light-generated current density of the passivated solar cell

\(J_{ph}^{\text{c}} \left( \lambda \right)\) :

Total light-generated current density of the conventional solar cell

\(J_{{0{\text{E}}}} \left( {J_{0E}^{{{\text{a}} - {\text{c}}}} } \right)\) :

Emitter dark saturation current density for metal (a-Si:H) contacted devices

ΔJ ph :

Increase in total light-generated current density

ΔV oc :

Increase in open-circuit voltage

Δη :

Increase in conversion efficiency

F a−c :

Amorphous–crystalline factor

References

  • Belghachi, A., Helmaoui, A.: Effect of the front surface field on GaAs solar cell photocurrent. Sol. Energy Mater. Sol. Cells 92, 667–672 (2008)

    Article  Google Scholar 

  • Bullock, J., Yan, D., Wan, Y., Cuevas, A., Demaurex, B., Hessler-Wyser, A., De Wolf, S.: Amorphous silicon passivated contacts for diffused junction silicon solar cells. J. Appl. Phys. 115, 163703 (2014a)

    Article  ADS  Google Scholar 

  • Bullock, J., Cuevas, A., Yan, D., Demaurex, B., Hessler-Wyser, A., De Wolf, S.: Amorphous silicon enhanced metal-insulator-semiconductor contacts for silicon solar cells. J. Appl. Phys. 116, 163703 (2014b)

    Article  ADS  Google Scholar 

  • Dai, X.M., Tang, Y.H.: A simple general analytical solution for the quantum efficiency of front-surface-field solar cells. Sol. Energy Mater. Sol. Cells 43, 363–376 (1996)

    Article  Google Scholar 

  • Del Alamo, J., Swanson, R.M.: The physics and modeling of heavily doped emitters. IEEE Trans. Electron Devices 31, 1878–1888 (1984)

    Article  ADS  Google Scholar 

  • Fellmeth, T., Mack, S., Bartsch, J., Erath, D., Jäger, U., Preu, R., Clement, F., Biro, D.: 20.1% Efficient silicon solar cell with aluminum back surface field. IEEE Electron Device Lett. 32, 1101–1103 (2011)

    Article  ADS  Google Scholar 

  • Fuhs, W., Korte, L., Schmidt, M.: Heterojunctions of hydrogenated amorphous silicon and monocrystalline silicon. J. Optoelectron. Adv. Mater. 8, 1989–1995 (2006)

    Google Scholar 

  • Granek, F., Reichel, C., Hermle, M., D., Huljic, M. Schultz, O., S., Glunz, W.: Front surface passivation of n-type high-efficiency back-junction silicon solar cells using front surface field. In: Proceedings of the 22nd European Photovoltaic Solar Energy Conference Exhibition, Milan, pp. 1454–1457 (2007)

  • Green, M.: Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients. Sol. Energy Mater. Sol. Cells 92, 1305–1310 (2008)

    Article  Google Scholar 

  • Gu, X., Yu, X., Yang, D.: Efficiency improvement of crystalline silicon solar cells with a back surface field produced by boron and aluminum co-doping. Scr. Mater. 66, 394–397 (2012)

    Article  Google Scholar 

  • Hernandez-Como, N., Morales-Acevedo, A.: Simulation of heterojunction silicon solar cells with AMPS-1D. Sol. Energy Mater. Sol. Cells 94, 62–67 (2010)

    Article  Google Scholar 

  • Holman, Z., Descoeudres, A., Barraud, L., Fernandez, F., Seif, J., De Wolf, S., Ballif, C.: Current losses at the front of silicon heterojunction solar cells. IEEE J. Photovolt. 2, 7–15 (2012)

    Article  Google Scholar 

  • Laades, A., Kliefoth, K., Korte, L., Brendel, K., Stangl, R., Schmidt M., Fuhs, W.: Surface passivation of crystalline silicon wafers by hydrogenated amorphous silicon probed by time resolved surface photovoltage and photoluminescence spectroscopy. In: Proceedings of the 19th European photovoltaic solar energy conference, Paris (2004)

  • Li, C.-T., Hsieh, F., Wang, L.: Performance improvement of p-type silicon solar cells with thin silicon films deposited by low pressure chemical vapor deposition method. Sol. Energy 88, 104–109 (2013)

    Article  ADS  Google Scholar 

  • Li, C.-T., Hsieh, F., Yan, S., Wan, C., Liu, Y., Chen, J., Wang, L.: Crystalline silicon solar cells with thin silicon passivation film deposited prior to phosphorous diffusion. Int. J. Photoenergy 2014, 1–8 (2014)

    Google Scholar 

  • Schmidt, M., Korte, L., Kliefoth, K., Schoepke, A., Stangl, R., Laades, A., Conrad, E., Brendel, K., Fuhs, W., Scherff, M., Fahrner, W.: Basic electronic properties of a-Si:H/c-Si heterostructure solar cells. In: Proceedings of the 19th European photovoltaic solar energy conference, Paris (2004)

  • Zouari, A., Ben Arab, A.: A simple formulation of the saturation current density in heavily doped emitters. Can. J. Phys. 81, 09–20 (2003)

    Article  Google Scholar 

  • Zouari, A., Ben Arab, A.: Analytical model and current gain enhancement of polysilicon-emitter contact bipolar transistors. IEEE Trans. Electron Devices 55, 3214–3220 (2008)

    Article  ADS  Google Scholar 

  • Zouari, A., Ben Arab, A.: Effect of the front surface field on crystalline silicon solar cell efficiency. Renew. Energy 36, 1663–1670 (2011)

    Article  Google Scholar 

  • Zouari, A., Trabelsi, A., Ben Arab, A.: Simple analytical solution and efficiency improvement of polysilicon emitter solar cells. Sol. Energy Mater. Sol. Cells 92, 313–322 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amira Bougoffa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bougoffa, A., Trabelsi, A., Zouari, A. et al. A new modeling approach for amorphous silicon passivated front contact for thin silicon solar cells. Opt Quant Electron 49, 259 (2017). https://doi.org/10.1007/s11082-017-1093-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1093-5

Keywords

Navigation