Skip to main content
Log in

The noise analysis of ghost imaging in transparent liquid

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Ghost imaging with a fully spatially incoherent source in transparent liquid is investigated theoretically and numerically. The effects of water depth, refractive index of media and object position on noise property of ghost imaging in transparent liquid are studied by using classical optical theory. Based on simulation results, we find that for different media, ghost imaging with high quality can be obtained by selecting appropriate water depth and object position which may be helpful for underwater ghost imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abouraddy, A.F., Saleh, B.E.A., Sergienko, A.V., Teich, M.C.: Entangled-photon Fourier optics. J. Opt. Soc. Am. B 19, 1174–1184 (2001)

    Article  ADS  Google Scholar 

  • Abouraddy, A.F., Saleh, B.E.A., Sergienko, A.V., Teich, M.C.: Role of entanglement in two-photon imaging. Phys. Rev. Lett. 87, 171–178 (2001)

    Article  Google Scholar 

  • Bai, Y., Han, S.: Ghost imaging with thermal light by third-order correlation. Phys. Rev. A 76, 538–538 (2007)

    Google Scholar 

  • Ben, H.K., Brun, G., Verrier, I., Froehly, L., Veillas, C.: High-resolution optical correlation imaging in a scattering medium. Opt. Lett. 26, 1969–1971 (2001)

  • Bennink, R.S., Bentley, S.J., Boyd, R.W.: “Two-photon” coincidence imaging with a classical source. Phys. Rev. Lett. 89, 113601 (2002)

  • Bromberg, Y., Katz, O., Silberberg, Y.: Ghost imaging with a single detector. Phys. Rev. A 79, 1744–1747 (2009)

    Article  Google Scholar 

  • Chen, J., Han, S., Yan, Y.: Resolution and noise in ghost imaging with classical thermal light. Chin. Phys. 15, 2002–2006 (2006)

  • Chen, X.H., Agafonov, I.N., Luo, K.H., Liu, Q., Xian, R., Chekhova, M.V., Wu, L.A.: High-visibility, high-order lensless ghost imaging with thermal light. Opt. Lett. 35, 1166–1168 (2010)

    Article  ADS  Google Scholar 

  • Cheng, J.: Ghost imaging through turbulent atmosphere. Opt. Express 17, 7916–7921 (2009)

    Article  ADS  Google Scholar 

  • Du, J., Gong, W., Han, S.: The influence of sparsity property of images on ghost imaging with thermal light. Opt. Lett. 37, 1067–1069 (2012)

  • Gatti, A., Lugiato, L., Oppo, G.L., Martin, R., Trapani, P.D., Berzanskis, A.: From quantum to classical images. Opt. Express 1, 21–31 (1997)

    Article  ADS  Google Scholar 

  • Gatti, A., Brambilla, E., Lugiato, L.A.: Entangled imaging and wave-particle duality: from the microscopic to the macroscopic realm. Phys. Rev. Lett. 90, 331–335 (2003)

  • Gatti, A., Brambilla, E., Bache, M., Lugiato, L.A.: Ghost imaging with thermal light: comparing entanglement and classical correlation. Phys. Rev. Lett. 93, 093602–093602 (2004)

    Article  ADS  Google Scholar 

  • Gong, W., Han, S.: Correlated imaging in scattering media. Opt. Lett. 36, 394–396 (2011)

    Article  ADS  Google Scholar 

  • Hardy, N.D., Shapiro, J.H.: Reflective ghost imaging through turbulence. Phys. Rev. A 84, 3474–3482 (2011)

    Article  Google Scholar 

  • Liu, J., Zhu, J., Lu, C., Huang, S.: High-quality quantum-imaging algorithm and experiment based on compressive sensing. Opt. Lett. 35, 1206–1208 (2010)

    Article  Google Scholar 

  • Luo, C., Cheng, J.: Ghost imaging with shaped incoherent sources. Opt. Lett. 38, 5381–5384 (2013)

  • Meyers, R.E., Deacon, K.S., Shih, Y.: Turbulence-free ghost imaging. Appl. Phys. Lett. 98, 041801 (2011)

  • Nie, L., Bai, Y., Fu, X.: Ghost telescope imaging system from the perspective of coherent-mode representation. Opt. Commun. 358, 88–91 (2016)

    Article  ADS  Google Scholar 

  • Pittman, T.B., Shih, Y.H., Strekalov, D.V., Sergienko, A.V.: Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52, R3429–R3432 (1995)

    Article  ADS  Google Scholar 

  • Saleh, B.E.A., Abouraddy, A.F., Sergienko, A.V., Teich, M.C.: Duality between partial coherence and partial entanglement. Phys. Rev. A 62, 523–530 (2000)

    Article  Google Scholar 

  • Shapiro, J.H.: Computational ghost imaging. Phys. Rev. A 78, 1–2 (2009)

    Google Scholar 

  • Strekalov, D.V., Sergienko, A.V., Klyshko, D.N., Shih, Y.H.: Observation of two-photon ghost interference and diffraction. Phys. Rev. Lett. 74, 3600–3603 (1995)

  • Tan, E.K., Jeffers, J., Barnett, S.M., Pegg, D.T.: Retrodictive states and two-photon quantum imaging. Eur. Phys. J. D 22, 495–499 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  • Xiang, Q., Yang, K., Yu, L., Guo, W.: Reflective underwater ghost imaging, Acta Opt. Sin. 35, 0711002 (2015)

  • Zafari, M., Ahmadi-Kandjani, S., Kheradmand, R.: Noise reduction in selective computational ghost imaging using genetic algorithm. Opt. Commun. 387, 182–187 (2017)

    Article  ADS  Google Scholar 

  • Zeng, X., Bai, Y., Shi, X., Gao, Y., Fu, X.: The influence of the positive and negative defocusing on lensless ghost imaging. Opt. Commun. 382, 415–420 (2017)

    Article  ADS  Google Scholar 

  • Zhang, P., Gong, W., Xia, S., Han, S.: Correlated imaging through atmospheric turbulence. Phys. Rev. A 82, 5183–5191 (2010)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 61372102 and 61571183) and Hunan Provincial Natural Science Foundation of China (Grant No. 2017JJ1014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfeng Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, L., Bai, Y., Shen, Q. et al. The noise analysis of ghost imaging in transparent liquid. Opt Quant Electron 49, 234 (2017). https://doi.org/10.1007/s11082-017-1075-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1075-7

Keywords

Navigation