Skip to main content

Propagation of p-polarized waves in a linearly graded index film surrounded by negative index materials

Abstract

The theory of step-index waveguides is well-established. Most practical slab waveguide structures have a graded-index profile. The basic properties of graded-index planar waveguide structures are similar to those of step-index waveguides with subtle differences. The most common types of graded-index slab waveguides are linearly and exponentially graded-index profiles. We here treat linearly graded-index slab waveguide. In this work, a three-layer waveguide structure with linearly graded-index film is considered. We assume three structures: the first structure comprises a left-handed material (LHM) cladding, the second structure contains a LHM substrate layer and the third has a LHM cladding and substrate. Closed-form expressions for electric and magnetic fields and the characteristic equation are derived. The three normalized parameters: the asymmetry coefficient (a), the normalized film thickness (V) and the normalized guide index (b) are used to study the dispersion properties of the proposed slab waveguide structure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abadla, M., Taya, S.A.: Excitation of TE surface polaritons in different structures comprising a left-handed material and a metal. Optik-Int. J. Light Electron Opt. 125, 1401–1405 (2014)

    Article  Google Scholar 

  2. Alu, A., Engheta, N.: Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 72, 016623 (2005)

    ADS  Article  Google Scholar 

  3. Clerc, D., Lukosz, W.: Real-time analysis of avidin adsorption with an integrated-optical output grating coupler: adsorption kinetics and optical anisotropy of adsorbed monomolecular layers. Biosens. Bioelectron. 12, 185–194 (1997)

    Article  Google Scholar 

  4. Conwell, E.M.: Modes in anisotropic optical waveguides formed by diffusion. IEE J. Quantum Electron QE 10, 608–612 (1974)

    ADS  Article  Google Scholar 

  5. Elwasife, K.Y., Taya, S.A.: Characteristics of symmetric left-handed material slab waveguide. IOSR J. Appl. Phys. 8, 91–98 (2016)

    Article  Google Scholar 

  6. Goell, J.E., Standley, R.D.: Sputtered glass wave-guide for integrated optical circuits. Bell Syst. Tech. J. 48, 3445–3448 (1969)

    Article  Google Scholar 

  7. Gribe, A., Eleftheriades, G.: Growing evanescent waves in negative-refractive index. Appl. Phys. Lett. 82, 1815–1817 (2003)

    ADS  Article  Google Scholar 

  8. Horváth, R., Pedersen, H., Skivesen, N., Selmeczi, D., Larsen, N.: Optical waveguide sensor for on-line monitoring of bacteria. Opt. Lett. 28, 1233–1235 (2003)

    ADS  Article  Google Scholar 

  9. Kaminow, I.P., Carruthers, J.R.: Optical waveguiding layers in LiNbO3, and LiTaO3. Appl. Phys. Lett. 22, 326–328 (1973)

    ADS  Article  Google Scholar 

  10. Kullab, H.M., Qadoura, I.M., Taya, S.A.: Slab waveguide sensor with left-handed material core layer for detection an adlayer thickness and index. J. Nano Electron. Phys. 7, 02039 (2015)

  11. Kullab, H.M., Taya, S.A.: Peak type metal-clad waveguide sensor using negative index materials. Int. J. Electron. Commun. (AEÜ) 67, 905–992 (2013)

    Article  Google Scholar 

  12. Kullab, H.M., Taya, S.A.: Transverse magnetic peak type metal-clad optical waveguide sensor. Optik-Int. J. Light Electron Opt. 145, 97–100 (2014)

    Article  Google Scholar 

  13. Kullab, H.M., Taya, S.A., El-Agez, T.M.: Metal-clad waveguide sensor using a left-handed material as a core layer. J. Opt. Soc. Am. B 29, 959–964 (2012)

    ADS  Article  Google Scholar 

  14. Marcuse, D.: Coupling coefficients for imperfect asymmetric slab waveguides. Bell Syst. Tech. J. 52, 63–82 (1973)

    Article  Google Scholar 

  15. Miller, S.E.: Integrated optics: an introduction. Bell Syst. Tech. J. 48, 2059–2069 (1969)

    Article  Google Scholar 

  16. Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)

    ADS  Article  Google Scholar 

  17. Qadoura, I.M., Taya, S.A., El-wasife, K.Y.: Scaling rules for a slab waveguide structure comprising nonlinear and negative index materials. Int. J. Microw. Opt. Technol. (IJMOT) 7, 349–357 (2012)

    Google Scholar 

  18. Qing, D.K., Chen, G.: Enhancement of evanescent waves in waveguides using metamaterials of negative permittivity and permeability. Appl. Phys. Lett. 84, 669–671 (2003)

    ADS  Article  Google Scholar 

  19. Savatinova, I., Nadjakov, E.: Modes in diffused optical waveguides (parabolic and Gaussian models). Appl. Phys. 8, 245–250 (1975)

    ADS  Article  Google Scholar 

  20. Shelby, R., Smith, D., Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)

    ADS  Article  Google Scholar 

  21. Skivesen, N., Horvath, R., Thinggaard, S., Larsen, N., Pedersen, H.: Deep-probe metal-clad waveguide biosensors. Biosens. Bioelectron. 22, 1282–1288 (2007)

    Article  Google Scholar 

  22. Smithgall, D.H., Dabby, F.W.: Graded-index planar dielectric waveguides. IEEE. J. Quantum Electron QE 9, 1023–1028 (1973)

    ADS  Article  Google Scholar 

  23. Taya, S.A.: Slab waveguide with air core layer and anisotropic left-handed material claddings as a sensor. Opto-Electron Rev. 22, 252–257 (2014)

    ADS  Article  Google Scholar 

  24. Taya, S.A.: Theoretical investigation of slab waveguide sensor using anisotropic metamaterials. Optica Appl. 45, 405–417 (2015a)

    Google Scholar 

  25. Taya, S.A.: Dispersion properties of lossy, dispersive, and anisotropic left-handed material slab waveguide. Optik-Int. J. Light Electron Opt. 126, 1319–1323 (2015b)

    Article  Google Scholar 

  26. Taya, S.A.: P-polarized surface waves in a slab waveguide with left-handed material for sensing applications. J. Magn. Magn. Mater. 377, 281–285 (2015c)

    ADS  Article  Google Scholar 

  27. Taya, S.A., Alamassi, D.M.: Reflection and transmission from left-handed material structures using Lorentz and Drude medium models. Opto-Electron Rev. 23, 214–221 (2015)

    Article  Google Scholar 

  28. Taya, S.A., El-Agez, T.M.: Optical sensors based on Fabry-Perot resonator and fringes of equal thickness structure. Optik-Int. J. Light Electron Opt. 123, 417–421 (2012)

    Article  Google Scholar 

  29. Taya, S.A., Elwasife, K.Y.: Guided modes in a metal-clad waveguide comprising a left-handed material as a guiding layer. Int. J. Res. Rev. Appl. Sci. (IJRRAS) 13, 294–305 (2012)

    MathSciNet  Google Scholar 

  30. Taya, S.A., Kullab, H.M.: Optimization of transverse electric peak type metal-clad waveguide sensor using double negative materials. Appl. Phys. A 116, 1841–1846 (2014)

    ADS  Article  Google Scholar 

  31. Taya, S.A., Qadoura, I.M.: Guided modes in slab waveguides with negative index cladding and substrate. Optik-Int. J. Light Electron Opt. 124, 1431–1436 (2013)

    Article  Google Scholar 

  32. Taya, S.A., Elwasife, K.Y.: Field profile of asymmetric slab waveguide structure with LHM layers. J. Nano Electron. Phys. 6, 02007 (2014)

    Google Scholar 

  33. Taya, S.A., Shabat, M.M., Khalil, H.: Enhancement of sensitivity in optical sensors using left-handed materials. Optik 120, 504–508 (2009)

    ADS  Article  Google Scholar 

  34. Taya, S.A., El-Farram, E.J., Abadla, M.M.: Symmetric multilayer slab waveguide structure with a negative index material: TM case. Optik-Int. J. Light Electron Opt. 123, 2264–2268 (2012a)

    Article  Google Scholar 

  35. Taya, S.A., El-Farram, E.J., El-Agez, T.M.: GoosHänchen shift as a probe in evanescent slab waveguide sensors. Int. J. Electron. Commun. (AEÜ) 66, 204–210 (2012b)

    Article  Google Scholar 

  36. Taya, S.A., Elwasife, K.Y., Kullab, H.M.: Dispersion properties of anisotropic-metamaterial slab waveguide structure. Opt. Appl. 43, 857–869 (2013a)

    Google Scholar 

  37. Taya, S.A., Kullab, H.M., Qadoura, I.M.: Dispersion properties of slab waveguides with double negative material guiding layer and nonlinear substrate. J. Opt. Soc. Am. B. 30, 2008–2013 (2013b)

    ADS  Article  Google Scholar 

  38. Taya, S.A., Jarada, A.A., Kullab, H.M.: Slab waveguide sensor utilizing left-handed material core and substrate layers. Optik-Int. J. Light Electron Opt. 127, 7732–7739 (2016)

    Article  Google Scholar 

  39. Taya, S.A., Mahdi, S.S., Alkanoo, A.A., Qadoura, I.M.: Slab waveguide with conducting interfaces as an efficient optical sensor: TE case Journal of modern optics. 64, 836–843 (2017a)

    ADS  Google Scholar 

  40. Taya, S.A., Shaheen, S.A., Alkanoo, A.A.: Photonic crystal as a refractometric sensor operated in reflection mode. Superlattices Microstruct. 101, 299–305 (2017b)

    ADS  Article  Google Scholar 

  41. Ulrich, R., Weber, H.P., Chandros, E.A., Tomlinson, W.J., Franke, E.A.: Embossed optical waveguides. Appl. Phys. Lett. 20, 213–215 (1972)

    ADS  Article  Google Scholar 

  42. Veselago, V.G.: The electrodynamics of substance with simultaneously negative values of ε and μ. Sov. Phy. Usp. 10, 509–514 (1968)

    ADS  Article  Google Scholar 

  43. Zhang, Z., Wang, Z., Wang, L.: Design principle of single- or double-layer waveabsorbers containing left-handed materials. Mater. Des. 30, 3908–3912 (2009)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sofyan A. Taya.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

AL-Juaidi, A., Alkanoo, A.A. & Taya, S.A. Propagation of p-polarized waves in a linearly graded index film surrounded by negative index materials. Opt Quant Electron 49, 195 (2017). https://doi.org/10.1007/s11082-017-1032-5

Download citation

Keywords

  • Slab waveguide
  • Graded-index profile
  • Normalized parameters