Skip to main content
Log in

Mechanism investigation of a narrow-band super absorber using an asymmetric Fabry–Perot cavity

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We propose a metal–insulator-metal super absorber based on an asymmetric Fabry–Perot cavity, by which a perfect narrow-band absorption can be achieved. In this structure, two silver layers form a cavity spaced by a lossless silicon oxide layer. The absorption of the absorber can reach about 98% and its absorption peak can be tuned by altering the thickness of the middle SiO2 layer. We further present a deep comprehension on the physics mechanism of such high absorption. This super absorber can be easily fabricated by mature thin film technology, which make it an appropriate candidate for photodetectors, sensing, and spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Byoungchoo, P., Soo, H.Y., Chan, Y.C., Young, C.K., Jung, C.S., Hong, G.J., Yoon, H.H., Inchan, H., Ku, Y.B., Young, I.L., Han, S.U., Guang, S.C., Eun, H.C.: Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors. Light Sci. Appl. 3, e222 (2014)

    Article  Google Scholar 

  • Chuan, F.G., Tianyi, S., Feng, C., Qian, L., Zhifeng, R.: Metallic nanostructures for light trapping inenergy-harvesting devices. Light Sci. Appl. 3, e161 (2014)

    Article  Google Scholar 

  • Claire, M.W., Xianliang, L., Willie, J.P.: Metamaterial electromagnetic wave absorbers. Adv. Mater. 24, 98–120 (2012)

    Google Scholar 

  • Costantini, D., Lefebvre, A., Coutrot, A.L., Moldovan-Doyen, I., Hugonin, J.P., Boutami, S., Marquier, F., Benisty, H., Greffet, J.J.: Plasmonic metasurface for directional and frequency-selective thermal emission. Phys. Rev. A 4, 014023 (2015)

    Article  Google Scholar 

  • Hamidreza, C., David, S., Mark, L.B.: Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett. 14, 1374–1380 (2014)

    Article  Google Scholar 

  • Jian, W., Wei, B.L., Xiao, B.L., Ji, L.L.: Terahertz wavefront control based on graphene manipulated Fabry–Pérot cavities. IEEE Photon. Technol. Lett. 28, 971–974 (2016)

    Google Scholar 

  • Lin, Y.C., Peng, Y.F., Alok, P.V., Justin, S.W., Zong, F.Y., Wen, S.C., Jon, A.S., Shanhui, F., Mark, L.B.: Semiconductor nanowire optical antenna solar absorbers. Nano Lett. 10, 439–445 (2010)

    Article  Google Scholar 

  • Mikhail, A.K., Romain, B., Patrice, G., Federico, C.: Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 12, 20–24 (2013)

    Google Scholar 

  • Minkyu, C., JungHun, S., Jaeseong, L., Deyin, Z., Hongyi, M., Xin, Y., Munho, K., Xudong, W., Weidong, Z., Zhenqiang, M.: Ultra-thin distributed bragg reflectors via stacked single-crystal silicon nanomembranes. Appl. Phys. Lett. 106, 181107 (2015)

    Article  Google Scholar 

  • Palik, E.D.: Handbook of Optical Constants in Solids. Academic Press, San Diego (1991)

    Google Scholar 

  • Qiang, L., Zizheng, L., Haigui, Y., Hai, L., Xiaoyi, W., Jinsong, G., Jingli, Z.: Novel aluminum plasmonic absorber enhanced by extraordinary optical transmission. Opt. Express 24, 25885–25893 (2016)

    Article  Google Scholar 

  • Renato, O., Alberto, T., Pierluigi, D.: Bimodal resonance phenomena—part I: generalized Fabry-Pérot interferometers. IEEE J. Quantum Electron. 52, 6100508 (2016)

    Google Scholar 

  • Salisbury, W.W.W.: Absorbent body for electromagnetic waves. Patent US 2599944 (1952)

  • Stephen, Y.C., Wei, D.: Ultrathin, high-efficiency, broad-band, omniacceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array. Opt. Express 21, A60–A76 (2012)

    Google Scholar 

  • Thomas, A., Raz, A., Ron, N., Kyriacos, K., Vojte, K., Aleksey, R., Phil, C., David, J.W.: Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures. Light Sci Appl. 5, e16036 (2016)

    Article  Google Scholar 

  • Vivian, E.F., Luke, A.S., Domenico, P., Harry, A.: Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett. 8, 4391–4397 (2008)

    Article  Google Scholar 

  • Wei, L., Jason, V.: Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 14, 3510–3514 (2014)

    Article  ADS  Google Scholar 

  • Xiang, C.M., Ying, D., Lin, Y., Bai, B.H.: Energy transfer in plasmonic photocatalytic composites. Light Sci. Appl. 5, e16017 (2016)

    Article  Google Scholar 

  • Yan, R.H., Simes, R.J., Coldren, L.A.: Electro absorptive Fabry–Perot reflection modulators with asymmetric mirrors. IEEE Photon. Technol. Lett. 9, 1041–1135 (1998)

    Google Scholar 

  • Yeh, P.: Optical Waves in Layered Media. Wiley, New York City (2005)

    Google Scholar 

  • Yen, H.S., Yuan, F.K., Shi, L.C., Qian, Y.Y.: Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell. Light Sci. Appl. 1, e14 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. U1435210, 61306125, 61675199 and 11604329), the Science and Technology Innovation Project (Y3CX1SS143) of CIOMP, the Science and Technology Innovation Project of Jilin Province (Nos. 20130522147JH and 20140101176JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Gao, J., Yang, H. et al. Mechanism investigation of a narrow-band super absorber using an asymmetric Fabry–Perot cavity. Opt Quant Electron 49, 159 (2017). https://doi.org/10.1007/s11082-017-0998-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-0998-3

Keywords

Navigation