Skip to main content
Log in

Simulation studies of DFB laser longitudinal structures for narrow linewidth emission

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The paper presents simulation studies targeting high-power narrow-linewidth emission from semiconductor distributed feedback (DFB) lasers. The studies contain analytic and numerical calculations of emission linewidth, side mode suppression ratio and output power for DFB lasers without phase shifts and with \(1\times \lambda /4\) and \(2\times \lambda /8\) phase shifts, taking into account the grating and facets reflectivities, the randomness of the spontaneous emission and the longitudinal photon and carrier density distributions in the laser cavity. Single device structural parameter optimization is generally associated with a trade-off between achieving a narrow linewidth and a high output power. Correlated optimization of multiple structural parameters enables the evaluation of achievable ranges of narrow linewidth and high power combinations. Devices with long cavities and low grating coupling coefficients, \(\kappa\) (keeping \(\kappa L\) values below the levels that promote re-broadening), with AR-coated facets and with a distributed phase-shift have the flattest longitudinal photon and carrier density distributions. This flatness enables stable single-longitudinal-mode operation with high side-mode-suppression ratio up to high injection current densities, which facilitates narrow linewidths and high output powers. The results reported in the paper indicate that Master-Oscillator Power-Amplifier laser structures are needed for achieving W-level high-powers with sub-MHz linewidths because most single-cavity DFB laser structural variations that reduce the linewidth also limit the achievable output power in single-mode operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Carroll, J.E., Whiteaway, J., Plumb, D.: Distributed Feedback Semiconductor Lasers, vol. 10. IET, London (1998)

    Book  Google Scholar 

  • Coldren, L.A., Corzine, S.W., Mashanovitch, M.L.: Diode Lasers and Photonic Integrated Circuits, vol. 218. Wiley, New York (2012)

    Book  Google Scholar 

  • Coleman, J.J., Bryce, A.C., Jagadish, C.: Advances in Semiconductor Lasers, vol. 86. Academic Press, London (2012)

    Book  Google Scholar 

  • Grillot, F., Dagens, B., Provost, J.G., Su, H., Lester, L.F.: Gain compression and above-threshold linewidth enhancement factor in 1.3-inas-gaas quantum-dot lasers. IEEE J. Quantum Electron. 44(10), 946–951 (2008)

    Article  ADS  Google Scholar 

  • Henry, C.H.: Theory of the linewidth of semiconductor lasers. IEEE J Quantum Electron 18(2), 259–264 (1982)

    Article  ADS  Google Scholar 

  • Laakso, A., Karinen, J., Telkkälä, J., Dumitrescu, M.: The effect of facet reflections in index-coupled distributed feedback lasers with coated facets. Opt. Quantum Electron. 42(11–13), 713–719 (2011)

    Article  Google Scholar 

  • Petermann, K.: Laser Diode Modulation and Noise, vol. 3. Springer, Berlin (2012)

    Google Scholar 

  • Piprek, J., et al.: Optoelectronic Devices. Springer, Berlin (2005)

    Book  Google Scholar 

  • Su, H., Zhang, L., Wang, R., Newell, T., Gray, A., Lester, L.: Linewidth study of InAs–InGaAs quantum dot distributed feedback lasers. IEEE Photon. Technol. Lett. 16(10), 2206–2208 (2004)

    Article  ADS  Google Scholar 

  • Takaki, K., Kise, T., Maruyama, K., Yamanaka, N., Funabashi, M., Kasukawa, A.: Reduced linewidth re-broadening by suppressing longitudinal spatial hole burning in high-power 1.55-\(\upmu\)m continuous-wave distributed-feedback (CW-DFB) laser diodes. IEEE J. Quantum Electron. 39(9), 1060–1065 (2003)

    Article  ADS  Google Scholar 

  • Virtanen, H.: Time-domain travelling wave modelling of dual-wavelength DFB lasers in remote heterodyne detection links. Master’s thesis. Tampere University of Technology, Tampere, Finland. Retrieved from http://URN.fi/URN:NBN:fi:tty-201505271422 (2015)

  • Wang, J., Schunk, N., Petermann, K.: Linewidth enhancement for DFB lasers due to longitudinal field dependence in the laser cavity. Electron. Lett. 23(14), 715–717 (1987)

    Article  Google Scholar 

Download references

Acknowledgements

The research has been done within the European Space Agency project Sub-Megahertz Linewidth Laser for Fundamental Physics Missions (Contract No. 4000110645/13/NL/HB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heikki Virtanen.

Additional information

This article is part of the Topical Collection on Numerical Simulation of Optoelectronic Devices 2016.

Guest edited by Yuh-Renn Wu, Weida Hu, Slawomir Sujecki, Silvano Donati, Matthias Auf der Maur and Mohamed Swillam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virtanen, H., Uusitalo, T. & Dumitrescu, M. Simulation studies of DFB laser longitudinal structures for narrow linewidth emission. Opt Quant Electron 49, 160 (2017). https://doi.org/10.1007/s11082-017-0993-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-0993-8

Keywords

Navigation