Chromatic dispersion compensation techniques and characterization of fiber Bragg grating for dispersion compensation

  • Aasif Bashir Dar
  • Rakesh Kumar JhaEmail author


Pulse spreading due to the dispersion causes the overlapping of the transmitted pulses at the receiver end known as inter symbol interference (ISI). The ISI thus limits transmission of high speed data. We are living in the age of bandwidth hungry and high speed applications, for which optical networks form the most important part because of its high bandwidth. In optical networks chromatic dispersion (CD) is one of the main obstacle in high speed transmission. Hence this CD is compensated by various approaches throughout the transmission system. A review of all the main approaches is presented in this paper. Characterization of fiber Bragg grating for dispersion compensation is done using the reflection spectrum and group delay response analysis.


Optical fiber communication Dispersion Dispersion management Fiber Bragg grating (FBG) Optical phase conjugation (OPC) Electronic dispersion compensation (EDC) Holey fibers 



The authors gratefully acknowledge the support provided by Shri Mata Vaishno Devi University, Katra Jammu and Kashmir, India and 5G & IoT Lab DoECE, S.M.V.D. University.


  1. Agazzi, O.E., Gopinathan, V.: The impact of nonlinearity on electronic dispersion compensation of optical channels. In: OFC2004, Anaheim, USA, TuG6Google Scholar
  2. Agrawal, P.: Fiber-Optic Communications Systems. Wiley, New York (2002a)CrossRefGoogle Scholar
  3. Agrawal, G.P.: Fiber-optics communication systems. Wiley Inter-Science, Hoboken (2002b)CrossRefGoogle Scholar
  4. Agrawal, G.P., Olsson, N.A.: Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE J. Quantum Electron. 25, 2297–2306 (1989)ADSCrossRefGoogle Scholar
  5. Aisawa, S., Kani, J., Fukui, M., Sakamoto, T., Jinno, M., Ono, H., Oguchi, K.: Dispersion-compensation-free 16 × 10 Gbit/s WDM transmission in 1580 nm band over 640 km of dispersion-shifted fibre by employing optical duobinary coding. Electron. Lett. 34(5), 480–481 (1998)CrossRefGoogle Scholar
  6. Aisawa, S., Kani, J.-I., Fukui, M., Sakamoto, T., Jinno, M., Norimatsu, S., Yamada, M., Ono, H., Oguchi, K.: A 1580-nm band WDM transmission technology employing optical duobinary coding. J. Lightwave Technol. 17(2), 191–199 (1999)ADSCrossRefGoogle Scholar
  7. Antos, J., Smith, D.K.: Design and characterization of dispersion compensating fiber based on the LP01 mode. J. Lightwave Technol. 12(10), 1739–1745 (1994)ADSCrossRefGoogle Scholar
  8. Birks, T.A., Mogilevtsev, D., Knight, J.C., Russell, P.S.J.: Dispersion compensation using single-material fibers. IEEE Photon. Technol. Lett. 11(6), 674–676 (1999)ADSCrossRefGoogle Scholar
  9. Bjarklev, A., Rasmussen, T., Lumholt, O., Rottwitt, K., Helmer, M.: Optimal design of single-cladded dispersion-compensating optical fibers. Opt. Lett. 19(7), 457–459 (1994)ADSCrossRefGoogle Scholar
  10. Brener, I., Mikkelsen, B., Rottwitt, K., Burkett, W., Raybon, G., Stark, J.B., Parameswaren, K., Chou, M.H., Fejer, M.M., Chaban, E.E., Harel, R., Philen, D.L., Kosinski, S.: Cancellation of all Kerr nonlinearities in long fiber spans using a LiNbO3 phase conjugator and Raman amplifi- cation. In: Presented at the Optical Fiber Communication Conference Post-Deadline Paper PD33, pp. 266–268 (2000)Google Scholar
  11. Breuer, D., Geilhardt, F., Hülserman, N.R., Kind, M., Lange, C., Monath, T., Weis, E.: Opportunities for next-generation optical access. IEEE Commun. Mag. 49(2), s16–s24 (2011)CrossRefGoogle Scholar
  12. Bromage, J., Winzer, P.J., Essiambre, R.-J.: Multiple path interference and its impact on system design. In: Islam, M.N. (ed.) Raman Amplifiers for Telecommunications II. Springer, New York (2003)Google Scholar
  13. Buchali, F.: Electronic dispersion compensation for enhanced optical transmission. In: Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference. OFC 2006, p. 3 (2006)Google Scholar
  14. Buck, J.A.: Fundamentals of Optical Fibers. Wiley, New York (1995)Google Scholar
  15. Cao, S., Lin, C., Barbarossa, G., Yang, C.: Dynamically tunable dispersion slope compensation using a virtually imaged phased array (VIPA). In: Advanced Semiconductor Lasers and Applications/Ultraviolet and Blue Lasers and Their Applications/Ultralong Haul DWDM Transmission and Networking/WDM Components, 2001. Digest of the LEOS Summer Topica, p. 2 (2001)Google Scholar
  16. Chaba, Y., Kaler, R.S.: Comparison of various dispersion compensation techniques at high bit rates using CSRZ format. Opt. Int. J. Light Electron Opt. 121(9), 813–817 (2010)CrossRefGoogle Scholar
  17. Chen, C.D., Kim, I., Mizhura, O., Nguyen, T.V., Ogawa, K., Tench, R.E., Tzeng, L.D., Yeates, P.D.: 40 Gbps × 35 ch (1.4 Tbps aggregate capacity) WDM transmission over 85 km standard single-mode fiber. Electron. Lett. 34, 2370–2371 (1998)CrossRefGoogle Scholar
  18. Cheng, N., Cartledge, J.C.: Power penalty due to the amplitude and phase response ripple of a dispersion compensating fiber Bragg grating for chirped optical signals. Lightwave Technol. 24(9), 3363–3369 (2006)ADSCrossRefGoogle Scholar
  19. Cregan, R.F., Mangan, B.J., Knight, J.C., Birks, T.A., Russell, PSt.J, Roberts, P.J., Allan, D.C.: Single-mode photonic band gap guidance of light in air. Science 285(5433), 1537–1539 (1999)CrossRefGoogle Scholar
  20. Crivelli, D.E., Carrer, H.S., Hueda, M.R.: On the performance of reduced state Viterbi receivers in IM/DD optical transmission systems. In: Proc. ECOC 2004, Paper We4.P.08Google Scholar
  21. Cross, P.S., Kogelnik, H.: Sidelobe suppression in corrugated-waveguide filters. Opt. Lett. 1, 43–45 (1977)ADSCrossRefGoogle Scholar
  22. Cvijetic, M., Inc ebrary: Optical Transmission Systems Engineering. Artech House, Boston (2004)Google Scholar
  23. Daikoku, M., Yoshikane, N., Morita, I.: Performance comparison of modulation formats for 40 Gb/s DWDM transmission systems. In: Presented at the Optical Fiber Communication (OFC), Anaheim, CA, Paper OFN2 (2005)Google Scholar
  24. Dar, A. B., Jha, R. K.: Design and comparative performance analysis of different chirping profiles of tanh apodized fiber Bragg grating and comparison with the dispersion compensation fiber for long-haul transmission system. J. Mod. Opt. 64(6), 555–566 (2017)Google Scholar
  25. Effenberger, F.J., Kani, J.-I., Maeda, Y.: Standardization trends and prospective views on the next generation of broadband optical access systems. IEEE J. Sel. Areas Commun. 28(6), 773–780 (2010)CrossRefGoogle Scholar
  26. Ennser, K., Zervas, M.N., Laming, R.: Optimization of apodized linearly chirped fiber gratings for optical communications. IEEE J. Quantum Electron. 34(5), 770–778 (1998)ADSCrossRefGoogle Scholar
  27. Farbert, A. et al.: Performance of a 10.7 GB/s receiver with digital equaliser using maximum likelihood sequence estimation. In: Proc. ECOC 2004, Paper Th4.1.5Google Scholar
  28. Fisher, R.A.: Quantum Electronics—Principles and Applications: Optical Phase Conjunction. Academic Press, San Diego (1983)Google Scholar
  29. Fludger, C.R.S., Duthel, T., Schulien, C.: Towards robust 100G ethernet transmission. In: Proceeding LEOS Summer Topical Meetings 2007 Digest of the IEEE, pp. 224–225Google Scholar
  30. Frateschi, N.C., Zhang, J., Choi, W.J., Gebretsadik, H., Jambunathan, R., Bond, A.E.: High performance uncooled C-band, 10 Gbit/s InGaAlAs MQW electroabsorption modulator integrated to semiconductor amplifier in laser-integrated modules. Electron. Lett. 40(2), 140–141 (2004)CrossRefGoogle Scholar
  31. Garrett, L.D., Gnauck, A.H., Eiselt, M.H., Tkach, R.W., Yang, C., Mao, C., Cao, S.: Demonstration of virtually-imaged phased-array device for tunable dispersion compensation in 16/spl times/10 Gb/s WDM transmission over 480 km standard fiber. In: Optical Fiber Communication Conference, 2000, vol. 4, pp. 187–189 (2000)Google Scholar
  32. Gnauck, A.H., Korotky, S.K., Veselka, J.J., Nagel, J., Kemmerer, C.T., Minford, W.J., Moser, D.T.: Dispersion penalty reduction using an optical modulator with adjustable chirp. IEEE Photon. Technol. Lett. 3(10), 916–918 (1991)ADSCrossRefGoogle Scholar
  33. Gnauck, A., Jopson, R., Derosier, R.: 10-Gb/s 360-km transmission over dispersive fiber using midsystem spectral inversion. Photon. Technol. Lett. 5(6), 663–666 (1993)ADSCrossRefGoogle Scholar
  34. Gordon, J.P., Mollenauer, L.F.: Phase noise in photonic communications systems using linear amplifiers. Opt. Lett. 15(23), 1351–1353 (1990)ADSCrossRefGoogle Scholar
  35. Gruner-Nielsen, L., Knudsen, S.N., Edvold, B., Veng, T., Magnussen, D., Larsen, C.C., Damsgaard, H.: Dispersion compensating fibres. Opt. Fiber Technol. 6, 164–180 (2000)ADSCrossRefGoogle Scholar
  36. Hill, K.O., Meltz, G.: Fiber Bragg grating technology fundamentals and overview. J. Lightwave Technol. 15(8), 1263–1276 (1997)ADSCrossRefGoogle Scholar
  37. Hill, K.O., Fujii, Y., Johnson, D.C., Kawasaki, B.S.: Photosensitivity in optical fiber waveguides: application to reflection filter fabrication. Appl. Phys. Lett. 32, 647–649 (1978)ADSCrossRefGoogle Scholar
  38. Hsu, J.-M., Yao, C.-W., Chen, J.-Z.: Wavelength-Tunable dispersion compensating photonic crystal fibers suitable for conventional/coarse wavelength division multiplexing systems. J. Lightwave Technol. 33(11), 2240–2245 (2015)ADSCrossRefGoogle Scholar
  39. Islam, M.A., Alam, M.S.: Design of a polarization-maintaining equiangular spiral photonic crystal fiber for residual dispersion compensation over E + S+C + L+U wavelength bands. IEEE Photon. Technol. Lett. 24(11), 930–932 (2012)ADSCrossRefGoogle Scholar
  40. Iwashita, K., Takachio, N.: Chromatic dispersion compensation in coherent optical communications. J. Lightwave Technol. 8(3), 367–375 (1990)ADSCrossRefGoogle Scholar
  41. Jaman, M.H., Ali, M.S., Ahmed, N., Aljunid, S.A., Rahman, M., Ahmad, R.B.: Large negative dispersion with residual dispersion (Dr) compensation over E + S+C + L+U wavelength bands by using single mode hexagonal photonic crystal fiber (H-PCF). In: 2014 2nd International Conference on Electronic Design (ICED), pp. 192–197 (2014)Google Scholar
  42. Jansen, S.L., Khoe, G.-D., de Waardt, H., Spälter, S., Weiske, C.-J., Schöpflin, A., Field, S.J., Escobar, H.E., Sher, M.H.: Mixed data rate and format transmission (40 Gb/s NRZ, 40 Gb/s duobinary, 10 Gb/s NRZ) using mid-link spectral inversion. Opt. Lett. 29(20), 2348–2350 (2004)ADSCrossRefGoogle Scholar
  43. Jansen, S.L., van den Borne, D., Spinnler, B., Calabrò, S., Suche, H., Krummrich, P.M., Sohler, W., Khoe, G.D., de Waardt, H.: Optical phase conjugation for ultra long-haul phaseshift-keyed transmission. J. Lightwave Technol. 24(1), 54–64 (2006)ADSCrossRefGoogle Scholar
  44. John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58(23), 2486–2489 (1987)ADSCrossRefGoogle Scholar
  45. Kaikai, X., Yang, O.: Theoretical and numerical characterization of a 40 Gbps long-haul multi-channel transmission system with dispersion compensation. Digit. Commun. Netw. 1(3), 222–228 (2015)CrossRefGoogle Scholar
  46. Kaler, R.S., Sharma, A.K., Kamal, T.S.: Comparison of pre-, post- and symmetrical-dispersion compensation schemes for 10 Gb/s NRZ links using standard and dispersion compensated fibers. Opt. Commun. 209(1–3), 107–123 (2002)ADSCrossRefGoogle Scholar
  47. Kawasaki, B.S., Hill, K.O., Johnson, D.C., Fujii, Y.: Narrow-band Bragg reflectors in optical fibers. Opt. Lett. 3, 66–68 (1978)ADSCrossRefGoogle Scholar
  48. Kim, H., Gnauck, A.H.: Experimental investigation of the performance limitation of DPSK systems due to nonlinear phase noise. IEEE Photon. Technol. Lett. 15(2), 320–322 (2003)ADSCrossRefGoogle Scholar
  49. Knight, J.C., Birks, T.A., Russell, PSt.J, Atkin, D.M.: All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996)ADSCrossRefGoogle Scholar
  50. Knight, J.C., Broeng, J., Birks, T.A., Russell, P.St.J: Photonic band gap guidance in optical fibers. Science 282(5393), 1476–1478 (1998)CrossRefGoogle Scholar
  51. Kolimbiris, H.: Fiber Optics Communications. Pearson, London (2004)Google Scholar
  52. Lee, G.-H., Xiao, S., Weiner, A.M.: Optical dispersion compensator with 4000-ps/nm tuning range using a virtually imaged phased array (vipa) and spatial light modulator (SLM). IEEE Photon. Technol. Lett. 18(17), 1819–1821 (2006)ADSCrossRefGoogle Scholar
  53. Lin, C., Kogelnik, H., Cohen, L.G.: Optical-pulse equalization of low-dispersion transmission in single-mode fibers in the 1.3–1.7 µm spectral region. Opt. Lett. 5(11), 476–478 (1980)ADSCrossRefGoogle Scholar
  54. Lorattanasane, C., Kikuchi, K.: Design theory of long-distance optical transmission systems using midway optical phase conjugation. J. Lightwave Technol. 15(6), 948–955 (1997)ADSCrossRefGoogle Scholar
  55. Marcuse, D.: Pulse distortion in single-mode fibers. 3: chirped pulses. Appl. Opt. 20, 3573–3579 (1981)ADSCrossRefGoogle Scholar
  56. McKinstrie, C.J., Radic, S., Xie, C.: Reduction of soliton phase jitter by in-line phase conjugation. Opt. Lett. 28(17), 1519–1521 (2003)ADSCrossRefGoogle Scholar
  57. Minzioni, P.: Nonlinearity compensation in a fiber-optic link by optical phase conjugation. Fiber Integr. Opt. 28(3), 179–209 (2009)CrossRefGoogle Scholar
  58. Minzioni, P., Cristiani, I., Degiorgio, V., Marazzi, L., Martinelli, M., Langrock, C., Fejer, M.M.: Experimental demonstration of nonlinearity and dispersion compensation in an embedded link by optical phase conjugation. IEEE Photon. Technol. Lett. 18(9), 995–997 (2006)ADSCrossRefGoogle Scholar
  59. Mohammad Nejad, S., Aliramezani, M., Pourmahyabadi, M.: Design and simulation of a dual-core photonic crystal fiber for dispersion compensation over E to L wavelength band. In: International Symposium on Telecommunications, 2008. IST 2008, pp. 138–143 (2008)Google Scholar
  60. Mohammad Nejad, S., Ehteshami, N.: A novel design to compensate dispersion for square-lattice photonic crystal fiber over E to L wavelength bands. In: 2010 7th International Symposium on Communication Systems Networks and Digital Signal Processing (CSNDSP), Newcastle upon Tyne, pp. 654–658 (2010)Google Scholar
  61. Mohammed, N., Solaiman, M., Aly, M.: Design and performance evaluation of a dispersion compensation unit using several chirping functions in a tanh apodized FBG and comparison with dispersion compensation fiber. Appl. Opt. 53, H239–H247 (2014)CrossRefGoogle Scholar
  62. Morgado, J.A.P., Cartaxo, A.V.T.: Dispersion supported transmission technique: comparison of performance in anomalous and normal propagation regimes. IEEE Proc. Optoelectron. 148(2), 107–116 (2001)CrossRefGoogle Scholar
  63. Morgado, J., Cartaxo, A.: Laser optimization for dispersion supported transmission systems. Proc. Inst. Electron. Eng. Optoelectron. J. 152(1), 49–56 (2005)CrossRefGoogle Scholar
  64. Morgado, J.A.P., Cartaxo, A.V.T.: Laser optimization guidelines for dispersion supported transmission systems operating at arbitrary bit rates. J. Lightwave Technol. 26(13), 1807–1816 (2008)ADSCrossRefGoogle Scholar
  65. Morito, K., Sahara, R., Sato, K., Kotaki, Y.: Penalty-free 10 Gb/s NRZ transmission over 100 km of standard fiber at 1.55 μm with a blue-chirp modulator integrated DFB laser. IEEE Photon. Technol. Lett. 8(3), 431–433 (1996)ADSCrossRefGoogle Scholar
  66. Nahas, M.M.: 50 ghz spaced 25 × 40 gbit/s wdm transmission over 560 km using smf-based large effective area fiber (leaf). Int. J. Optoelectron. Eng. 2(1), 17–20 (2012)CrossRefGoogle Scholar
  67. Ngo, M.N., Nguyen, H.T., Gosset, C., Erasme, D., Deniel, Q., Genay, N., Guillamet, R., Lagay, N., Decobert, J., Poingt, F., Brenot, R.: electroabsorption modulated laser integrated with a semiconductor optical amplifier for 100-km 10.3 Gb/s dispersion-penalty-free transmission. J. Lightwave Technol. 31(2), 232–238 (2013)ADSCrossRefGoogle Scholar
  68. Nouchi, P., Dany, B., Campion, J.-F., de Montmorillon, L.-A., Sillard, P., Bertaina, A.: Optical communication and fiber design. In: Annales des t´el´ecommunications, vol. 58, pp. 1586–1602, Springer (2003)Google Scholar
  69. Nuyts, R.J., Park, Y.K., Gallion, P.: Dispersion equalization of a 10 Gb_s repeater transmission system using dispersion compensating fibers. J. Lightwave Technol. 15(1), 31–42 (1997)ADSCrossRefGoogle Scholar
  70. Olsson, N.A., Agrawal, G.P.: Spectral shift and distortion due to self-phase modulation of picosecond pulses in 1.5 mm amplifiers. Appl. Phys. Lett. 55, 13–15 (1989)ADSCrossRefGoogle Scholar
  71. Onishi, M., Fukuda, C., Kanamori, H., Nishimura, M.: High NA double-cladding dispersion compensating fiber for WDM systems. In: Proceedings, European Conference on Optical Communication, ECOC’94, pp. 681–684 (1994a)Google Scholar
  72. Onishi, M., Koyano, Y., Shigematsu, M., Kanamori, H., Nishimura, M.: Dispersion compensating fibre with a high figure of merit of 250 ps_nm_dB. Electron. Lett. 30(2), 161–163 (1994b)CrossRefGoogle Scholar
  73. Ooi, H., Nakamura, K., Akiyama, Y., Takahara, T., Terahara, T., Kawahata, Y., Isono, H., Ishikawa, G.: 40-Gb/s WDM transmission with virtually imaged phased array (VIPA) variable dispersion compensators. J. Lightwave Technol. 20(12), 2196–2203 (2002)ADSCrossRefGoogle Scholar
  74. Ouellette, F.: All-fiber filter for efficient dispersion compensation. Opt. Lett. 16, 303–305 (1991)ADSCrossRefGoogle Scholar
  75. Pei, L., Ning, T., Yan, F., Dong, X., Tan, Z., Liu, Y., Jian, S.: Dispersion compensation of fiber Bragg gratings in 3100 km high speed optical fiber transmission system. Front. Optoelectron. China 2(2), 163–169 (2009)CrossRefGoogle Scholar
  76. Pepper, D.M., Yariv, A.: Compensation for phase distortions in nonlinear media by optical phase conjugation. Opt. Lett. 5(2), 59–61 (1980)ADSCrossRefGoogle Scholar
  77. Poole, C.D., Wiesenfeld, J.M., McCormick, A.R., Nelson, K.T.: Broadband dispersion compensation by using high-order spatial mode in a two-mode fiber. Opt. Lett. 17, 985–987 (1992)ADSCrossRefGoogle Scholar
  78. Poole, C.D., Wiesenfeld, J.M., DiGiovanni, D.J., Vengsarkar, A.M.: Optical fiber-based dispersion compensation using higher order modes near cutoff. J. Lightwave Technol. 12, 1745–1758 (1994)ADSGoogle Scholar
  79. Randhawa, R., Sohal, J.S., Kaler, R.S.: Pre-, post and hybrid dispersion mapping techniques for CSRZ optical networks with nonlinearities. Opt. Int. J. Light Electron Opt. 121(14), 1274–1279 (2010)CrossRefGoogle Scholar
  80. Saitoh, K., Koshiba, M.: Leakage loss and group velocity dispersion in air-core photonic bandgap fibers. Opt. Express 11, 3100–3109 (2003)ADSCrossRefGoogle Scholar
  81. Shariar, A., Hassan, M.M.: Highly nonlinear polarization maintaining photonic crystal fiber with high negative dispersion. In: 2015 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), pp. 1–6, (2015)Google Scholar
  82. Shirasaki, M.: Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer. Opt. Lett. 21(5), 366–368 (1996)ADSCrossRefGoogle Scholar
  83. Shirasaki, M.: Chromatic-dispersion compensator using virtually imaged phased array. IEEE Photon. Technol. Lett. 9(12), 1598–1660 (1997)ADSCrossRefGoogle Scholar
  84. Shirasaki, M.: Virtually imaged phased array. Fujitsu Sci. Tech. J. 35(1), 113–125 (1999)Google Scholar
  85. Tan, Z., Wang, Y., Ren, W., Liu, Y., Li, B., Ning, T., Jian, S.: Transmission system over 3000 km with dispersion compensated by chirped fiber Bragg gratings. Opt. Int. J. Light Electron Opt. 120(1), 9–13 (2009)CrossRefGoogle Scholar
  86. Vengsarkar, M., Miller, A.E., Haner, M., Gnauck, A.H., Reed, W.A., Walker, K.L.: Fundamental-mode dispersion-compensating fibers: design considerations and experiments. In: Digest of Optical Fiber Communications Conference, OFC’94, Paper ThK2, pp. 225–227 (1994)Google Scholar
  87. Wandel, M., Kristensen, P., Veng, T., Qian, Y., Le, Q., Gr¨uner-Nielsen, L.: Dispersion compensating fibers for non-zero dispersion fibers. In: OFC 2002, Paper WU1Google Scholar
  88. Watanabe, S., Chikama, T.: Cancellation of four-wave mixing in multichannel fibre transmission by midway optical phase conjugation. Electron. Lett. 30(14), 1156–1157 (1994)CrossRefGoogle Scholar
  89. Watanabe, S., Naito, T., Chikama, T.: Compensation of chromatic dispersion in a single-mode fiber by optical phase conjugation. Opt. Lett. 5(1), 92–95 (1993)Google Scholar
  90. Watanabe, T., Sakaida, N., Yasaka, H., Kano, F., Koga, M.: Transmission performance of chirp-controlled signal by using semiconductor optical amplifier. J. Lightwave Technol. 18(8), 1069–1077 (2000)ADSCrossRefGoogle Scholar
  91. Watts, P.M., Mikhailov, V., Savorv, S., Glick, M., Bayvel P., Killev, R.: Electronic signal processing techniques for compensation of chromatic dispersion. In: Proc. NOC (2005)Google Scholar
  92. Wedding, B., Franz, B., Junginger, B.: 10-Gb/s optical transmission up to 253 km via standard single-mode fiber using the method of dispersion-supported transmission. J. Lightwave Technol. 12(10), 1720–1727 (1994)ADSCrossRefGoogle Scholar
  93. Woods, G.L., Papaparaskeva, P., Shtaif, M., Brener, I., Pitt, D.A.: Reduction of cross-phase modulation-induced impairments in long-haul WDM telecommunication systems via spectral inversion. IEEE Photon. Technol. Lett. 16(2), 677–679 (2004)ADSCrossRefGoogle Scholar
  94. Xia, C., Rosenkranz, W.: Performance enhancement for duobinary modulation through nonlinear electrical equalization. In: ECOC2005, Glasgow, Tu4.2.3, vol. 2, pp. 257–258Google Scholar
  95. Xinrong, H., Sun, Q., Li, J., Li, C., Liu, Y., Zhang, J.: Spectral dispersion modeling of virtually imaged phased array by using angular spectrum of plane waves. Opt. Express 23, 1–12 (2015)ADSCrossRefGoogle Scholar
  96. Xu, K.: Comparison of dispersion compensation in a 40 Gbps WDM optical communication system. Proc. SPIE 7846(78460H), 1–7 (2010)Google Scholar
  97. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58(20), 2059–2062 (1987)ADSCrossRefGoogle Scholar
  98. Yadav, J., Kaur, R., Singh, R.: Performance comparison of dispersion compensation techniques on 40 Gbps OTDM system at S-band and C-band over different fiber standards. Opt. Int. J. Light Electron Opt. 126(4), 391–393 (2015)CrossRefGoogle Scholar
  99. Yamawaku, J., Takara, H., Ohara, T., Sato, K., Takada, A., Morioka, T., Tadanaga, O., Miyazawa, H., Asobe, M.: Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tb/s (103 × 10 Gb/s) signals in PPLN waveguide. Electron. Lett. 39(15), 1144–1145 (2003)CrossRefGoogle Scholar
  100. Yariv, A., Fekete, D., Pepper, D.M.: Compensation for channel dispersion by nonlinear optical phase conjugation. Opt. Lett. 4(2), 52–54 (1979)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Shri Mata Vaishno Devi University Katra KakrayalUdhampurIndia

Personalised recommendations