Advertisement

Influence of CuO nanoparticles on third order nonlinearity and optical limiting threshold of polymer/ZnO nanocomposites

  • Haider Mohammed ShanshoolEmail author
  • Muhammad Yahaya
  • Wan Mahmood Mat Yunus
  • Ibtisam Yahya Abdullah
Article

Abstract

The linear and nonlinear optical properties of polymer/inorganic nanocomposites have received a great interest because of their potential application such as optical limiting devices. A flexible foil like polymer/ZnO nanocomposites and polymer/ZnO/CuO nanocomposites have been prepared via casting method. ZnO and CuO nanoparticles were used as filler, while four different types of polymer were used as polymer matrix. The purity and composition of the nanocomposites were confirmed via EDX analysis and EDS mapping. Surface morphology of samples was tested by FESEM that were shown the dispersion of ZnO and CuO nanoparticles successfully. To study the influence of adding CuO nanoparticles on polymer/ZnO nanocomposites; the liner transmittance was measured and linear absorption coefficient was calculated. The results show a decrease in linear transmittance and increase in linear absorption coefficient when CuO nanoparticles was added. Then, the absorption coefficient and refractive index of the as-prepared sample were analysed using an open and closed aperture single beam Z-scan technique via Q-switched Nd-YAG pulse laser at 532 nm. The nonlinear refractive index was in the order of 10−12 cm2/W with a negative sign whereas the nonlinear absorption coefficient was in the order of 10−7 cm/W. The real part, imaginary part and the absolute value of the third order nonlinear optical susceptibility χ(3) were calculated. The χ(3) was in the order of 10−6 esu. The effect of adding CuO nanoparticles to nanocomposites was enhanced their nonlinear optical properties. Consequently, a good optical limiting was obtained. The optical limiting threshold of the samples was measured. The results showed that the prepared nanocomposites can be considered as an excellent candidate for optical limiting devices, which clearly affected by the adding CuO nanoparticles and the type of polymer matrix. Nanocomposites PMMA/ZnO/CuO and PS/ZnO/CuO showed the low optical limiting threshold, which were equal to 60 and 50 Mw/cm2, respectively.

Keywords

Optical limiting threshold Polymer/ZnO nanocomposites Polymer/ZnO/CuO nanocomposites Third order nonlinearity 

Notes

Acknowledgements

The authors would like to acknowledge the contribution and the financial support by the Malaysian Ministry of Higher Education and Universiti Kebangsaan Malaysia under research Grant (FRGS/1/2013/SG02/UKM/01/1). The authors would like to thank Dr. Tan Sin Tee for her contribution EDX characterization and conceptual advice.

References

  1. Al Jaafari, A.A., Ayesh, A.S.: Effect of ZnO nano-particles on the dielectric relaxation behavior and thermal stability of polycarbonate host. J. Thermoplast. Compos. Mater. 24(6), 837–852 (2011)CrossRefGoogle Scholar
  2. Aleali, H., Mansour, N.: Nonlinear responses and optical limiting behavior of Ag nanoparticle suspension. J. Sci. Islam. Repub. Iran 21(3), 273–278 (2010)Google Scholar
  3. Al-Gaashani, R.A.H.: Synthesis of metal oxide nanopowders by microwave assisted process and thermal decomposition method. Doctoral disseration, UKM (2012)Google Scholar
  4. Al-Hussam, A.M.A., Jassim, S.A.-J.: Synthesis, structure, and optical properties of CdS thin films nanoparticles prepared by chemical bath technique. J. Assoc. Arab. Univ. Basic Appl. Sci. 11(1), 27–31 (2012)Google Scholar
  5. Al-Taa, W., Nabi, M.A., Yusop, R.M., Yousif, E., Abdullah, M., Salimon, J., Salih, N., Zubairi, S.I.: Effect of nano ZnO on the optical properties of poly (vinyl chloride) films. Int. J. Polym. Sci. 2014, 1–6 (2014)CrossRefGoogle Scholar
  6. Anand, B., Kaniyoor, A., Swain, D., Baby, T.T., Venugopal Rao, S., Sankara Sai, S.S., Ramaprabhu, S., Philip, R.: Enhanced optical limiting and carrier dynamics in metal oxide-hydrogen exfoliated graphene hybrids. J. Mater. Chem. C 2(47), 10116–10123 (2014)CrossRefGoogle Scholar
  7. Ando, M., Kadono, K., Haruta, M., Sakaguchi, T.: Large third-order optical nonlinearities in transition-metal oxides. Nature 374, 625627 (1995)CrossRefGoogle Scholar
  8. Anžlovar, A., Crnjak Orel, Z., Kogej, K., Žigon, M.: Polyol-mediated synthesis of zinc oxide nanorods and nanocomposites with poly(methyl methacrylate). J. Nanomater. 2012, 1–9 (2012)CrossRefGoogle Scholar
  9. Aranda, C.L.W.F.J., Lapalli, D., Nrao, V.G.L., Zhov, J.P., Chen, Z., Akkara, J.A., Kaplan, D.L., Roach, F.: Nonlinear optical interactions in bacteriohodospin using Z-scan. Opt. Rev. 2(3), 204–206 (1995)CrossRefGoogle Scholar
  10. Bahae, M.S., Said, A.A., Wei, T.H., Hagan, D.J., Van Stryland, E.W.: Sensitive measurements of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26(4), 760–769 (1990)ADSCrossRefGoogle Scholar
  11. Battaglin, F.G., Calvelli, P., Cattaruzza, E., Gonella, R.P.: Z-scan study on the nonlinear refractive index of copper nanocluster composite silica glass. Appl. Phys. Lett. 78(25), 3953–3955 (2001)ADSCrossRefGoogle Scholar
  12. Bhunia, R., Ghosh, D., Ghosh, B., Hussain, S., Bhar, R., Pal, A.: Free-standing flexible nanocrystalline-ZnO-impregnated polyvinylidene fluoride composite thin films. J. Compos. Mater. 2014, 1–13 (2014)Google Scholar
  13. Boyd, R.W.: Nonlinear Optics, 3rd edn. (2007)Google Scholar
  14. Chen, Q., Schadler, L.S., Siegel, R.W., Irvin, G.C., Jr., Company, E.K.: ZnO/PMMA thin film nanocomposites for optical coatings. In: Proceedings of SPIE. Nanocrystals, and organic and hybrid nanomaterials, vol. 5222, pp. 158–162. Bellingham (2003)Google Scholar
  15. Chen, A., Yang, G., Long, H., Li, F., Li, Y., Lu, P.: Nonlinear optical properties of laser deposited CuO thin films. Thin Solid Films 517(15), 4277–4280 (2009)ADSCrossRefGoogle Scholar
  16. Chen, A., Yang, G., Long, H., Lu, P., Zhang, W., Wang, H.: Optical limiting properties in copper oxide thin films under a high-repetition-rate femtosecond laser. Mater. Lett. 91(September 2015), 319–322 (2013)CrossRefGoogle Scholar
  17. Dagher, S., Haik, Y., Ayesh, A.I., Tit, N.: Synthesis and optical properties of colloidal CuO nanoparticles. J. Lumin. 151, 149–154 (2014)CrossRefGoogle Scholar
  18. De Nalda, R., Del Coso, R., Requejo-Isidro, J., Olivares, J., Suarez-Garcia, A., Solis, J., Afonso, C.N.: Limits to the determination of the nonlinear refractive index by the Z-scan method. J. Opt. Soc. Am. B 19(2), 289 (2002)ADSCrossRefGoogle Scholar
  19. Dorranian, D., Golian, Y., Hojabri, A.: Investigation of nitrogen plasma effect on the nonlinear optical properties of PMMA. J. Theor. Appl. Phys. 6(1), 1–8 (2012)CrossRefGoogle Scholar
  20. El-Kader, F.H.A., Hakeem, N.A., Elashmawi, I.S., Ismail, A.M.: Structural, optical and thermal characterization of ZnO nanoparticles doped in PEO/PVA blend films. Aust. J. Basic Appl. Sci. 7(10), 608–619 (2013)Google Scholar
  21. Freitas, L.R., Jacinto, C., Ródenas, A., Jaque, D., Catunda, T.: Time-resolved study electronic and thermal contributions to the nonlinear refractive index of Nd3+:SBN laser crystals. J. Lumin. 128(5–6), 1013–1015 (2008)CrossRefGoogle Scholar
  22. Ghosh, G.: Handbook of Thermo-Optic Coefficients of Optical Materials with Applications, vol. 5. Academic Press, Cambridge (1998)Google Scholar
  23. Hamdalla, A., Hanafy, T.A., Bekheet, A.E.: Influence of erbium ions on the optical and structural properties of polyvinyl alcohol. J. Spectrosc. 2015, 1–7 (2015)CrossRefGoogle Scholar
  24. Hari, M., Joseph, S.A., Balan, N., Mathew, S., Kumar, R., Mishra, G., Yadhav, R.R., Radhakrishnan, P., Nampoori, V.P.N.: Linear and nonlinear optical properties of gold nanoparticles stabilized with polyvinyl alcohol. J. Nonlinear Opt. Phys. Mater. 20(04), 467–475 (2011)ADSCrossRefGoogle Scholar
  25. Haripadmam, P.C., Kavitha, M.K., John, H., Krishnan, B., Gopinath, P.: Optical limiting studies of ZnO nanotops and its polymer nanocomposite films. Appl. Phys. Lett. 101(7), 071103–071103-5 (2012)ADSCrossRefGoogle Scholar
  26. Haripadmam, P.C., John, H., Philip, R., Gopinath, P.: Enhanced optical limiting in polystyrene-ZnO nanotop composite films. Opt. Lett. 39(3), 474–477 (2014)ADSCrossRefGoogle Scholar
  27. Hassan, Q.M.A., Al-ahmad, A.Y., Al-mudhaffer, M.F., Badran, H.A.: Third-order optical nonlinearities and optical-limiting properties of phloxine b dye doped pmma films investigated by Z-scan technique. Rom. J. Phys. 58(7–8), 962–969 (2013)Google Scholar
  28. Husaini, S., Teng, H., Menon, V.M.: Enhanced nonlinear optical response of metal nanocomposite based photonic crystals. Appl. Phys. Lett. 101(11), 111103 (2012)ADSCrossRefGoogle Scholar
  29. Indolia, A.P., Gaur, M.S.: Optical properties of solution grown PVDF-ZnO nanocomposite thin films. J. Polym. Res. 20(1), 1–8 (2013)CrossRefGoogle Scholar
  30. Irimpan, L.M.: Spectral and nonlinear optical characterization of ZnO nanocomposites. Doctoral dissertation, Cochin University of Science and Technology (2008)Google Scholar
  31. Jacinto, C., Messias, D.N., Andrade, A.A., Lima, S.M., Baesso, M.L., Catunda, T.: Thermal lens and Z-scan measurements: thermal and optical properties of laser glasses—a review. J. Non. Cryst. Solids 352(32–35), 3582–3597 (2006)ADSCrossRefGoogle Scholar
  32. Jeeju, P.P.: Investigations on some technologically important polymer nunocomposite films and semi crystalline Polypyrrole films. Doctoral dissertation, Cochin University of Science and Technology, Cochin, Kerala, India (2012)Google Scholar
  33. Jeeju, P.P., Jayalekshmi, S., Chandrasekharan, K., Sudheesh, P.: Size dependent nonlinear optical properties of spin coated zinc oxide-polystyrene nanocomposite films. Opt. Commun. 285(24), 5433–5439 (2012)ADSCrossRefGoogle Scholar
  34. Jeeju, P.P., Jayalekshmi, S., Chandrasekharan, K.: Nonlinear optical properties of ZnO/poly (vinyl alcohol) nanocomposite films. In: OPTOELECTRONICS MATERIALS and Thin Film, AIP Conference Proceedings, vol. 1576, pp. 163–166 (2014)Google Scholar
  35. Jundale, D.M., Navale, S.T., Khuspe, G.: Polyaniline–CuO hybrid nanocomposites: synthesis, structural, morphological, optical and electrical transport studies. J. Mater. Sci.: Mater. Electron. 24, 3526–3536 (2013)Google Scholar
  36. Khan, M., Chen, M., Wei, C., Tao, J., Huang, N., Qi, Z., Li, L.: Synthesis at the nanoscale of ZnO into poly(methyl methacrylate) and its characterization. Appl. Phys. A 117(3), 1085–1093 (2014)CrossRefGoogle Scholar
  37. Kulyk, B., Sahraoui, B., Krupka, O., Kapustianyk, V., Rudyk, V., Berdowska, E., Tkaczyk, S., Kityk, I.: Linear and nonlinear optical properties of ZnO/PMMA nanocomposite films. J. Appl. Phys. 106(9), 093102–093102-6 (2009)ADSCrossRefGoogle Scholar
  38. Kumar, R., Venugopal Rao, S., Giribabu, L., Narayana Rao, D.: Nonlinear optical properties of alkyl phthalocyanines in the femtosecond, nanosecond, and cw excitation regimes. Proc. SPIE 6875, 68751D (2008)CrossRefGoogle Scholar
  39. Kumar, N.B.R., Crasta, V., Praveen, B.M.: Advancement in microstructural, optical, and mechanical properties of PVA (Mowiol 10-98) doped by ZnO nanoparticles. Phys. Res. Int. 2014, 1–9 (2014)CrossRefGoogle Scholar
  40. Kumari, V., Kumar, V., Mohan, D., Purnima, Malik, B.P., Mehra, R.M.: Effect of surface roughness on laser induced nonlinear optical properties of annealed ZnO thin films. J. Mater. Sci. Technol. 28(6), 506–511 (2012)CrossRefGoogle Scholar
  41. Li, S., Lin, M.M., Toprak, M.S., Kim, D.K., Muhammed, M.: Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev. 1, 1–19 (2010)CrossRefGoogle Scholar
  42. Mahdi, Z.F., Altaify, D.: Nonlinear optical properties of nanoparticles CdS thin film using Z-scan technique. In: 5th Saudi Technical Conference and Exhibition, Riyadh, 11–14 Jan 2009, pp. 1–6 (2009)Google Scholar
  43. Mallika, A.N., Reddy, A.R., Reddy, K.V.: Annealing effects on the structural and optical properties of ZnO nanoparticles with PVA and CA as chelating agents. J. Adv. Ceram. 4(2), 123–129 (2015)CrossRefGoogle Scholar
  44. Manshad, R.K.H., Hassan, Q.M.A.: Optical limiting properties of magenta doped PMMA under CW laser illumination. Adv. Appl. Sci. Res. 3(6), 3696–3702 (2012)Google Scholar
  45. Mathews, S.J., Chaitanya Kumar, S., Giribabu, L., Venugopal Rao, S.: Large third-order optical nonlinearity and optical limiting in symmetric and unsymmetrical phthalocyanines studied using Z-scan. Opt. Commun. 280(1), 206–212 (2007)ADSCrossRefGoogle Scholar
  46. Mathew, S., Saran, A.D., Joseph, S.A., Bhardwaj, B.S., Punj, D., Radhakrishnan, P., Nampoori, V.P.N., Vallabhan, C.P.G., Bellare, J.R.: Nonlinear optical characterization and measurement of optical limiting threshold of CdSe quantum dots prepared by a microemulsion technique. J. Mater. Sci.: Mater. Electron. 23(3), 739–745 (2012)Google Scholar
  47. Nagaraja, K.K., Pramodini, S., Poornesh, P., Nagaraja, H.S.: Effect of annealing on the structural and nonlinear optical properties of ZnO thin films under cw regime. J. Phys. D Appl. Phys. 46(5), 1–12 (2013)CrossRefGoogle Scholar
  48. Nwanya, A.C., Chigbo, C., Ezugwu, S.C., Osuji, R.U., Malik, M., Ezema, F.I.: Transformation of cadmium hydroxide to cadmium oxide thin films synthesized by SILAR deposition process: role of varying deposition cycles. J. Assoc. Arab. Univ. Basic Appl. Sci. 20, 49–54 (2016)Google Scholar
  49. Ryasnyanskiy, A.I., Palpant, B., Debrus, S., Pal, U., Stepanov, A.L.: Optical nonlinearities of Au nanoparticles embedded in a zinc oxide matrix. Opt. Commun. 273(2), 538–543 (2007)ADSCrossRefGoogle Scholar
  50. Sangawar, V.S., Golchha, M.C.: Evolution of the optical properties of Polystyrene thin films filled with Zinc Oxide nanoparticles. Int. J. Sci. Eng. Res. 4(6), 2700–2705 (2013)Google Scholar
  51. Shahmiri, M., Ibrahim, N.A., Faraji, N., Yunus, W.M.M., Asim, N., Zainuddin, N.: Third-order nonlinear optical properties of chemically synthesized copper oxide nanosheets. Phys. E: Low-dimens. Syst. Nanostruct. 54, 109–114 (2013)ADSCrossRefGoogle Scholar
  52. Shanshool, H.M., Yahaya, M., Yunus, W.M.M., Abdullah, I.Y.: Measurements of nonlinear optical properties of PVDF/ZnO using Z-scan technique. Braz. J. Phys. 45(5), 538–544 (2015)ADSCrossRefGoogle Scholar
  53. Shanshool, H.M., Yahaya, M., Yunus, W.M.M., Abdullah, I.Y.: Third order nonlinearity of PMMA/ZnO nanocomposites as foils. Opt. Quantum Electron. 48(1), 1–14 (2016)CrossRefGoogle Scholar
  54. Sheik-Bahae, M., Said, A.A., Van Stryland, E.W.: High-sensitivity, single-beam n(2) measurements. Opt. Lett. 14(17), 955–957 (1989)ADSCrossRefGoogle Scholar
  55. Sreeja, R., John, J., Aneesh, P.M., Jayaraj, M.K.: Linear and nonlinear optical properties of luminescent ZnO nanoparticles embedded in PMMA matrix. Opt. Commun. 283(14), 2908–2913 (2010)ADSCrossRefGoogle Scholar
  56. Tamgadge, Y.S., Sunatkari, A.L., Talwatkar, S.S., Pahurkar, V.G., Muley, G.G.: Linear and nonlinear optical properties of nanostructured Zn(1 − x)SrxO–PVA composite thin films. Opt. Mater. (Amst). 37, 42–50 (2014)ADSCrossRefGoogle Scholar
  57. Tamgadge, Y.S., Pahurkar, V.G., Talwatkar, S.S., Sunatkari, A.L., Muley, G.G.: Thermally stimulated third-order optical nonlinearity in Cd-doped CuO–PVA thin films under cw laser illumination. Appl. Phys. B 120(2), 373–381 (2015)ADSCrossRefGoogle Scholar
  58. Van Stryland, E.W., Sheik-bahae, M.: Z-scan measurements of optical nonlinearities. In: Characterization Techniques and Tabulations for Organic Nonlinear Materials, pp. 655–692 (1998)Google Scholar
  59. Vinitha, G., Manirahulan, K., Ramalingam, A.: Optical limiting characteristics of core-shell nanoparticles. J. Nonlinear Opt. Phys. Mater. 19(04), 621–628 (2010)ADSCrossRefGoogle Scholar
  60. Yang, H.G., Wang, W., Yan, L., Lu, Z.C., Yang, G.: Z-scan determination of the large third-order optical nonlinearity of Rh:BaTiO3 thin films deposited on MgO substrates. Opt. Commun. 209, 445–449 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Haider Mohammed Shanshool
    • 1
    • 3
    Email author
  • Muhammad Yahaya
    • 1
  • Wan Mahmood Mat Yunus
    • 2
  • Ibtisam Yahya Abdullah
    • 1
    • 4
  1. 1.Faculty of Science and Technology, School of Applied PhysicsUniversiti Kebangsaan Malaysia (UKM)BangiMalaysia
  2. 2.Department of Physics, Faculty of ScienceUniversity Putra Malaysia (UPM)SerdangMalaysia
  3. 3.Laser and Optoelectronics Research CentreMinistry of Science and TechnologyBaghdadIraq
  4. 4.Department of Physics, College of ScienceUniversity of MosulMosulIraq

Personalised recommendations