Skip to main content
Log in

Performance of discrete wavelet technique in the de-noising of noisy spectrum in the mid-infrared region near 4.5 µm

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We applied discrete wavelet transform (DWT) technique for de-noising of carbon monoxide (CO) spectrum which is experimentally obtained in the mid-infrared region using a difference-frequency-based spectrometer. The performance of DWT is firstly examined by de-noising of a simulated P(16) CO absorption line based on the real data associated with the experimental setup we arranged in laboratory. It is found that when the db20 function from Daubechie wavelet family is used at level 7 of composition, highest signal-to-noise ratio (SNR) ~23 can be achieved. Similar results are obtained in the experiment in which a noisy CO trace is de-noised using the same procedure as described in the simulation. Subsequently, highest SNR of ~9.2 and lowest residuals is experimentally obtained using the db20 function which confirms the merit of DWT technique in detection of low-level absorption signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alsberg, B.K., Woodward, A.M., Winson, M.K., Rowland, J., Kell, D.B.: Wavelet denoising of infrared spectra. Analyst 122, 645–652 (1997)

    Article  ADS  Google Scholar 

  • Arslanov, D.D., Swinkels, K., Cristescu, S.M., Harren, F.J.M.: Real-time, subsecond, multicomponent breath analysis by optical parametric oscillator based off-axis integrated cavity output spectroscopy. Opt. Express 19, 24078–24089 (2011)

    Article  ADS  Google Scholar 

  • Bauer, C., Sharma, A.K., Willer, U., Burgmeier, J., Braunschweig, B., Schade, W., Blaser, S., Hvozdara, L., Müller, A., Holl, G.: Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives. Appl. Phys. B 92, 327–333 (2008)

    Article  ADS  Google Scholar 

  • Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41, 613–627 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho, D.L., Johnstone, M.I.: Ideal spatial adaptation via wavelet shrinkage. Biometrika 81, 425–455 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Erdelyi, M., Richter, D., Tittel, F.K.: 13CO2/12CO2 isotopic ratio measurements using a difference frequency-based sensor operating at 4.35 µm. Appl. Phys. B 75, 289–295 (2002)

    Article  ADS  Google Scholar 

  • Flores, E., Viallon, J., Moussay, P., Wielgosz, R.I.: Accurate Fourier Transform Infrared (FT-IR) spectroscopy measurements of nitrogen dioxide (NO2) and nitric acid (HNO3) calibrated with synthetic spectra. Appl. Spectrosc. 67, 1171–1178 (2013)

    Article  ADS  Google Scholar 

  • Gabor, D.: Theory of communication. J. Inst. Electr. Eng. 93, 429–457 (1946)

    Google Scholar 

  • Galloway, C.M., Ru, E.C.L., Etchegoin, P.G.: An iterative algorithm for background removal in spectroscopy by wavelet transforms. Appl. Spectroscopy 63, 1370–1376 (2009)

    Article  ADS  Google Scholar 

  • Gao, Z.-L., Ye, W.-L., Zheng, C.-T., Wang, Y.-D.: Wavelet-denoising technique in near-infrared methane detection based on tunable diode laser absorption spectroscopy. Optoelectron. Lett. 10, 299–303 (2014)

    Article  ADS  Google Scholar 

  • Gao, Q., Zhang, Y., Yu, J., Wu, S., Zhang, Z., Zheng, F., Lou, X., Guo, W.: Tunable multi-mode diode laser absorption spectroscopy for methane detection. Sens. Actuators A: Phys. 199, 106–110 (2013)

    Article  Google Scholar 

  • Gianfrani, L., De Natale, P., De Natale, G.: Remote sensing of volcanic gases with a DFB-laser-based fiber spectrometer. Appl. Phys. B 70, 467–470 (2000)

    Article  ADS  Google Scholar 

  • Goldenstein, C.S., Hanson, R.K.: Diode-laser measurements of linestrength and temperature-dependent lineshape parameters for H2O transitions near 1.4 mm using Voigt, Rautian, Galatry, and speed-dependent Voigt profiles. J. Quant. Spectrosc. Radiat. Transf. 152, 127–139 (2015)

    Article  ADS  Google Scholar 

  • Grossmann, A., Morlet, J.: Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 15, 723–736 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • HITRAN on the web: Harvard-Smithsonian Center for Astrophysics (CFA), Cambridge, MA, USA (2014)

  • Jovanov, L., Pižurica, A., Philips, W.: Fuzzy logic-based approach to wavelet denoising of 3D images produced by time-of-flight cameras. Opt. Express 18, 22651–22676 (2010)

    Article  ADS  Google Scholar 

  • Jozdani, M.M., Khorsandi, A., Sabouri, S.G.: Polymeric fiber sensor for sensitive detection of carbon dioxide based on apodized wavelength modulation spectroscopy. Appl. Phys. B 118, 219–229 (2015)

    Article  ADS  Google Scholar 

  • Klepeis, N.E., Ott, W.R., Repace, J.L.: The effect of cigar smoking on indoor levels of carbon monoxide and particles. J. Expos. Anal. Environ. Epidemiol. 9, 622–635 (1999)

    Article  Google Scholar 

  • Krzempek, K., Lewicki, R., Nähle, L., Fischer, M., Koeth, J., Belahsene, S., Rouillard, Y., Worschech, L., Tittel, F.K.: Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane. Appl. Phys. B 106, 251–255 (2012)

    Article  ADS  Google Scholar 

  • Lancaster, D.G., Fried, A., Wert, B., Henry, B., Tittel, F.K.: Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde. Appl. Opt. 39, 4436–4443 (2000)

    Article  ADS  Google Scholar 

  • Li, S., Chen, G., Zhang, Y., Guo, Z., Liu, Z., Xu, J., Li, X., Lin, L.: Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques. Opt. Express 22, 25895–25908 (2014)

    Article  ADS  Google Scholar 

  • Li, J., Yu, B., Fischer, H.: Wavelet transform based on the optimal wavelet pairs for tunable diode laser absorption spectroscopy signal processing. Appl. Spectrosc. 69, 496–506 (2015)

    Article  ADS  Google Scholar 

  • Maleki, M., Sabouri, S.G., Khorsandi, A.: V-shaped external cavity diode pump for 100 nm continuous tuning of a difference-frequency generation. Opt. Laser Technol. 56, 436–442 (2014)

    Article  ADS  Google Scholar 

  • Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Pattern Anal. Mach. Intell. 11, 674–693 (1989)

    Article  MATH  Google Scholar 

  • Mappe-Fogaing, I.N., Joly, L., Durry, G., Dumelie, N., Decarpenterie, T., Cousin, J., Parvitte, B., Ninari, V.Z.: Wavelet denoising for infrared laser spectroscopy and gas detection. Appl. Spectrosc. 66, 700–710 (2012)

    Article  ADS  Google Scholar 

  • Misiti, M., Misiti, Y., Oppenheim, G., Poggi, J.-M.: Wavelet Toolbox for Use with Matlab. The MathWorks Inc., Natick (1996)

    MATH  Google Scholar 

  • Parameswaran, K.R., Rosen, D.I., Allen, M.G., Ganz, A.M., Risby, T.H.: Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements. Appl. Opt. 48, B73–B79 (2009)

    Article  ADS  Google Scholar 

  • Pogány, A., Klein, A., Ebert, V.: Measurement of water vapor line strengths in the 1.4–2.7 µm range by tunable diode laser absorption spectroscopy. J. Quant. Spectrosc. Radiat. Transf. 165, 108–122 (2015)

    Article  ADS  Google Scholar 

  • Rieker, G.B., Jeffries, J.B., Hanson, R.K.: Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments. Appl. Opt. 48, 5546–5560 (2009)

    Article  ADS  Google Scholar 

  • Roller, C., Namjou, K., Jeffers, J.D., Camp, M., Mock, A., McCann, P.J., Grego, J.: Nitric oxide breath testing by tunable-diode laser absorption spectroscopy: application in monitoring respiratory inflammation. Appl. Opt. 41, 6018–6029 (2002)

    Article  ADS  Google Scholar 

  • Salati, S.H., Khorsandi, A.: Apodized 2f/1f wavelength modulation spectroscopy method for calibration-free trace detection of carbon monoxide in the near-infrared region: theory and experiment. Appl. Phys. B 116, 521–531 (2014)

    Article  ADS  Google Scholar 

  • Shemshad, J.: Analysis of inaccuracy induced by intensity variation of a DFB laser in fibre optic multipoint 2f-WMS measurements of methane near 1666 nm. Sens. Actuators A: Phys. 222, 96–101 (2015)

    Article  Google Scholar 

  • Sun, Y., Wei, F., Dong, Z., Chen, D., Cai, H., Qu, R.: All-optical frequency stabilization and linewidth reduction of distributed feedback diode lasers by polarization rotated optical feedback. Opt. Express 22, 15757–15762 (2014)

    Article  ADS  Google Scholar 

  • Yao, Z., Zhang, W., Wang, M., Chen, J., Shen, Y., Wei, Y., Yu, X., Li, F., Zeng, H.: Tunable diode laser absorption spectroscopy measurements of high-pressure ammonium dinitramide combustion. Aerosp. Sci. Technol. 45, 140–149 (2015)

    Article  Google Scholar 

  • Zheng, C.-T., Huang, J.-Q., Ye, W.-L., Lv, M., Dang, J.-M., Cao, T.-S., Chen, C., Wang, Y.-D.: Demonstration of a portable near-infrared CH4 detection sensor based on tunable diode laser absorption spectroscopy. Infrared Phys. Technol. 61, 306–312 (2013)

    Article  ADS  Google Scholar 

  • Zhu, F., Bicer, A., Askar, R., Bounds, J., Kolomenskii, A.A., Kelessides, V., Amani, M., Schuessler, H.A.: Mid-infrared dual frequency comb spectroscopy based on fiber lasers for the detection of methane in ambient air. Laser Phys. Lett. 12, 095701 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Khorsandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabani, Z., Ghavami Sabouri, S. & Khorsandi, A. Performance of discrete wavelet technique in the de-noising of noisy spectrum in the mid-infrared region near 4.5 µm. Opt Quant Electron 48, 526 (2016). https://doi.org/10.1007/s11082-016-0805-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0805-6

Keywords

Navigation