Skip to main content
Log in

Numerical device simulation of carbon nanotube contacted CZTS solar cells

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Nanolayers of graphene and nanotubes have become the attractive materials as the front or back electrodes in thin film solar cells. We propose a novel thin-film solar cell structure in which the traditional transparent conductive oxide electrode, ZnO:Al, is replaced by a thin layer of single-wall carbon nanotubes bundle with a honeycomb network. SCAPS simulation is used to investigate the band diagram, current–voltage characteristics and quantum efficiency of this hybrid device. The advantage of embedding metallic nanotubes is the superior electrical and optical properties such as  wide and controllable work function and transparency to wider range of wavelengths as well as high charge transport conductivity. These excellent optical and electrical properties led to a better short-circuit current density and quantum efficiency in hybrid CZTS devices. In addition, we observed an improvement in open-circuit voltage of the Au:Cu doped nanotube bundles compared to undoped nanolayer network. Nanolayers do reduce the device degradation by covering the grain boundaries and surpassing the ion migration under aging conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aldosari, M., Sohrabpoor, H., Gorji, N.E.: Optical modeling of graphene contacted CdTe solar cells. Superlatt. Microstruct. 92, 242–248 (2016)

    Article  ADS  Google Scholar 

  • Amin, N., Hossein, M., Chelvanathan, P., MukterUzzaman, A., Sopian, K.: Prospects of Cu2ZnSnS4 (CZTS) solar cells from numerical analysis. In: 6th International Conference on Electrical and Computer Engineering, pp. 730–734, Dhaka, Bangladesh (2010)

  • Contreras, M., Barnes, T., Lagemaat, J., Rumbles, G., Coutts, T.: Application of single wall carbon nanotubes as transparent electrodes in Cu(In, Ga)Se2-based solar cells. In: IEEE 4th World Conference on Photovoltaic Energy Conference, pp. 428–431, Waikoloa, HI, USA (2006)

  • Danilson, M., Kask, E., Pokharel, N., et al.: Temperature dependent current transport properties in Cu2ZnSnS4 solar cells. Thin Solid Films 582, 162–165 (2015)

    Article  ADS  Google Scholar 

  • Frisk, C., Ericson, T., Li, S.-Y., Szaniawski, P., Olsson, J., Platzer-Björkman, C.: Combining strong interface recombination with band gap narrowing and short diffusion leng thin Cu2ZnSnS4 device modeling. Sol. Energy Mater. Sol. Cells 144, 364–370 (2016)

    Article  Google Scholar 

  • Gorji, N.E., Sohrabpoor, H.: Modeling of light interference in CH3NH3PbI3Clx and MAPbI3Cl perovskite solar cells. Mater. Lett. 177, 143–147 (2016)

    Article  Google Scholar 

  • Haque, F., Khan, N., Rahman, K., Islam, M., Alam, M., Sopian, K.: Prospects of zinc sulphide as an alternative buffer layer for CZTS solar cells from numerical analysis. In: 8th International Conference on Electrical and Computer Engineering, pp. 504–508, Dhaka, Bangladesh, (2014)

  • Herve, J, Tchogina, N., Arba, Y., Dakhsi, K., et al.: Optimization of the output parameters in kesterite-based solar cells by AMPS-1D. In: 3rd International Renewable and Sustainable Energy Conference, 1–6, Marrakesh (2015)

  • Hossain, M., Chelvanathan, P., Alam, M.M., Akhtaruzzaman, M., Sopian, K.: Potential buffer layers For Cu2ZnSnS4 (CZTS) solar cells from numerical analysis. In: 2013 IEEE Conference on Clean Energy and Technology, pp. 450–455, Lankgkawi (2013)

  • Houshmand, M., Zandi, M.H., Gorji, N.E.: Modeling of optical losses in graphene contacted thin film solar cells. Mater. Lett. 164, 493–497 (2016)

    Article  Google Scholar 

  • Jeon, I., Delacou, C., Kaskela, A., Kauppinen, E.I., Maruyama, S., Matsuo, Y.: Metal-electrode-free window-like organic solar cells with p-doped carbon nanotube thin-film electrodes. Sci. Rep. 6, 31348 (2016)

    Article  ADS  Google Scholar 

  • Kanevce, A., Repins, I., Wei, S.-H.: Impact of bulk properties and local secondary phases on the Cu2(Zn, Sn)Se4 solar cells open-circuit voltage. Sol. Energy Mater. Sol. Cells 133, 119–125 (2015)

    Article  Google Scholar 

  • Khanal, R., Phillips, A., Song, Z., Xie, Y., Mahabaduge, H., Dorogi, M., Zafar, S., Faykosh, G.T., Heben, M.J.: Substrate configuration, bifacial CdTe solar cells grown directly on transparent single wall carbon nanotube back contacts. Sol. Energy Mater. Sol. Cells 157, 35–41 (2016)

    Article  Google Scholar 

  • Patel, M., Ray, A.: Enhancement of output performance of Cu2ZnSnS4 thin film solar cells—a numerical simulation approach and comparison to experiments. Phys. B 407, 4391–4397 (2012)

    Article  ADS  Google Scholar 

  • Phillips, A.B., Khanal, R.R., Song, Zh, Zartman, R., DeWitt, J., et al.: Wiring-up carbon single wall nanotubes to polycrystalline inorganic semiconductor thin films: low-barrier, copper-free back contact to CdTe solar cells. Nano Lett. 13, 5224–5232 (2013)

    Article  ADS  Google Scholar 

  • Phillips, A.B., Khanal, R., Song, Z., Watthage, S., Kormanyos, K., Hebe, M.: Simultaneous shunt protection and back contact formation for CdTe solar cells with single wall carbon nanotube layers. Appl. Phys. Lett. 107, 253901 (2015)

    Article  ADS  Google Scholar 

  • Ren, Y., Scragg, J., Ericson, T., Kubart, T., Platzer-Björkman, C.: Reactively sputtered films in the CuxS–ZnS–SnSy system: from metastability to equilibrium. Thin Solid Films 582, 208–214 (2015a)

    Article  ADS  Google Scholar 

  • Ren, Y., Hu, K.S., Peng, X.F., Bai, W.Q., Peng, L.H.: Electronic transport properties of metal–centrosymmetric zigzag carbon nanotube heterojunction devices with different lengths. Jpn. J. Appl. Phys. 54, 055101 (2015b)

    Article  ADS  Google Scholar 

  • Scott, R.P., Cullen, A.C., Fox-Lent, C., Linkov, I.: Can carbon nanomaterials improve CZTS photovoltaic devices? Evaluation of performance and impacts using integrated life-cycle assessment and decision analysis. Risk Anal. (2016). doi:10.1111/risa/12539

    Google Scholar 

  • Simya, O., Batcha, A., Balachandar, K.: Device characteristics of a 10.1 % hydrazine-processed Cu2ZnSn(Se, S). Superlatt. Microstruct. 82, 248–261 (2015)

    Article  ADS  Google Scholar 

  • Sohrabpoor, H., Elyasi, M., Aldosari, M., Gorji, N.E.: Modeling the PbI2 formation in perovskite solar cells using XRD/XPS patterns. Supperlatt. Microstruct. 97, 556–561 (2016)

    Article  ADS  Google Scholar 

  • Xu, J.: Investigation of Cu2ZnSnS4 thin-film solar cells with carrier concentration gradient. J. Phys. Chem. Solids 98, 32–37 (2016)

    Article  ADS  Google Scholar 

  • Zhang, H., Cheng, Sh, Yu, J., Zhou, H., Jia, H.: Prospects of Zn(O, S) as an alternative buffer layer for Cu2ZnSnS4 thin-film solar cells from numerical simulation. Micro Nano Lett. 11(7), 386–390 (2016)

    Article  Google Scholar 

  • Zhao, W., Zhou, W., Miao, X.: Numerical simulation of CZTS thin film solar cell. In: Proceedings of 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), pp. 502–505, Kyoto, Japan (2012)

Download references

Acknowledgments

The senior research fellowship of Iran Nanotechnology Initiative Council is greatly appreciated. Grant No. 113276, 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima E. Gorji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darvishzadeh, P., Sohrabpoor, H. & Gorji, N.E. Numerical device simulation of carbon nanotube contacted CZTS solar cells. Opt Quant Electron 48, 480 (2016). https://doi.org/10.1007/s11082-016-0741-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0741-5

Keywords

Navigation