Skip to main content
Log in

Design of a polarization filtering photonic crystal fiber with a big gold-coated air hole

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The polarization characteristics of photonic crystal fiber (PCF) with nanoscale gold film is evaluated by using the finite element method. The cross-section structure of the PCF is composed of a hexagonal lattice of air holes in which an air hole is gold coated. The resonance strength and the impact of structural parameters of the PCF on the polarization filter characteristics are studied. By our structure, the loss of y-polarized mode is further larger than the loss of x-polarized mode at the wavelength 1.31 and 1.55 μm. The corresponding loss in y-polarized can reach a value of 136,253 and 167607 dB/m at the resonance wavelengths of 1.31 and 1.55 μm respectively. It can be used for carrying data/voice at the communication windows of 1.31 and 1.55 μm. Meanwhile, we can realize the filtering effect with a very short fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agrawal, G.P.: Nonlinear fiber optics [M]. Nolinear science at the dawn of the 21st century. Lecture Notes in Physics, vol. 542. Springer, Berlin (2000)

  • Almasian, M.R., Abedi, K.: A proposal for optical WDM using embedded photonic crystal ring resonator with distributed coupling. Physica E 79, 173–179 (2016)

    Article  ADS  Google Scholar 

  • Arismar Cerqueira Jr., S.: Recent progress andnovel applications of photonic crystal fibers. Rep. Prog. Phys. 73, 024401 (2010)

    Article  ADS  Google Scholar 

  • Ashok, N., Rastogi, V., Kumar, A.: Dual-core leaky optical waveguide as an integrated-optic polarizer. Opt. Commun. 285, 5094–5099 (2012)

    Article  ADS  Google Scholar 

  • Azzam, S.I., Obayya, S.S.A.: Ultra-compact resonant tunneling-based TE-pass and TM-pass polarizers for SOI platform. Opt. Lett. 40(6), 1061–1064 (2015)

    Article  ADS  Google Scholar 

  • Chen, M.Y., Yu, R.J., Zhao, A.P.: Polarization properties of rectangular lattice photonic crystal fibers. Opt. Commun. 241, 365–370 (2004)

    Article  ADS  Google Scholar 

  • Chen, L., Zhang, W., Zhang, Z., Liu, Y., Sieg, J., Zhang, L., Zhou, Q., Wang, L., Wang, B., Yan, T.: Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance. IEEE Photon J. 6(4), 1–9 (2014)

    Article  Google Scholar 

  • Du, Y., Li, S.G., Zhu, X.P., Zhang, X.X.: Polarization splitter filter characteristics of Au-filled high-birefringence photonics crystal fiber. Appl. Phys. B 109(1), 65–74 (2012)

    Article  ADS  Google Scholar 

  • Fornarelli, G., Mescia, L.: A neural network model of erbium-doped photonic crystal fibre amplifiers. Opt. Laser Technol. 41, 580–585 (2009)

    Article  ADS  Google Scholar 

  • Geng, Y., Li, X., Tan, X., Deng, Y., Hong, X.: Compact and ultrasensitive temperature sensor with a fully liquid filled photonic crystal fiber mach-zehnder interferometer. IEEE Sens. J. 14(1), 167–170 (2014)

    Article  Google Scholar 

  • Haakestad, M.W., Alkeskjold, T.T., Nielsen, M.D., Scolari, L., Riishede, J., Engan, H.E., Bjarklev, A.: Electrically tunable photonic band gap guidance in a liquid-crystal-filled photonic crystal fiber. PTL 17, 819–821 (2005)

    Article  ADS  Google Scholar 

  • Koshiba, M.: Full-vector analysis of photonic crystal fiber using the finite element method. IEICE Trans. Electron. E85-C, 881–888 (2002)

    Google Scholar 

  • Lee, H.W., Schmidt, M.A., Tyagi, H.K., Sempere, L.P., Russell, P.S.J.: Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber. Appl. Phys. Lett. 93(11), 111102 (2008)

    Article  ADS  Google Scholar 

  • Lee, H.W., et al.: Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers. Opt. Express 19(13), 12180–12189 (2011)

    Article  ADS  Google Scholar 

  • Liou, J.H., Huang, S.S., Yu, C.P.: Loss-reduced highly birefringent selectively liquid-filled photonic crystal fibers. Opt. Commun. 283, 971–974 (2010)

    Article  ADS  Google Scholar 

  • Liu, Z.L., Xing, J.W., Du, H.L.: Polarization rotator based on liquid crystal infiltrated tellurite photonic crystal fiber. Optik 127, 4391–4395 (2016)

    Article  ADS  Google Scholar 

  • Nagasaki, A., Saitoh, K., Koshiba, M.: Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes. Opt. Express 19, 3799–3808 (2011)

    Article  ADS  Google Scholar 

  • Russell, P.: Photonic crystal fibers. Appl. Phys. Rev. 299, 358–362 (2003)

    Google Scholar 

  • Russell, P.: Photonic crystal fibers: a historical account. IEEE LEOS News lett. 10, 11–15 (2007)

    Google Scholar 

  • Tyagi, H.K., Schmidt, M.A., Prill Sempere, L., Russell, P.S.J.: Optical properties of photonic crystal fiber with integral micron-sized Ge wire. Opt. Express 16, 17227–17236 (2008)

    Article  ADS  Google Scholar 

  • Tyagi, H.K., Lee, H.W., Uebel, P., Schmidt, M.A., Joly, N., Scharrer, M., Russell, P.S.J.: Plasmon resonances on gold nanowires directly drawn in a step-index fiber. Opt. Lett. 35, 2573–2575 (2010)

    Article  ADS  Google Scholar 

  • Vial, A., Grimault, A.-S., Macías, D., Barchiesi, D., de la Chapelle, M.: Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite difference time-domain method. Phys. Rev. B 71, 085416 (2005)

    Article  ADS  Google Scholar 

  • Wang, Y.Y., Chen, D.Y.: A super narrow band filter based on silicon 2D photonic crystal resonator and reflectors. Opt. Commun. 363, 13–20 (2016)

    Article  ADS  Google Scholar 

  • Wang, G.Y., Li, S.G., An, G.W., Wang, X.Y., Zhao, Y.Y., Zhang, W.: Design of a polarized filtering photonic-crystal fiber with gold-coated air holes. Appl. Opt. 54(30), 8817–8820 (2015)

    Article  ADS  Google Scholar 

  • Xue, J.R., Li, S.G., Xiao, Y.Z., Qin, W., Xin, X.J., Zhu, X.P.: Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance. Opt. Express 21(11), 13733–13740 (2013)

    Article  ADS  Google Scholar 

  • Yao, W.Y., Zhu, Y.Y.: Flat-topped hollow laser beams can be obtained by using the multi-core photonic crystal fiber mixed with GeO2. Optik 126, 3761–3766 (2015)

    Article  ADS  Google Scholar 

  • Zhang, X., Wang, R., Cox, F.M., Kuhlmey, B.T., Large, M.C.J.: Selective coating of holes in micro structured optical fiber and its application to in-fiber absorptive polarizers. Opt. Express 15, 16270–16278 (2007)

    Article  ADS  Google Scholar 

  • Zhang, Z., Shi, Y., Bian, B., Lu, J.: Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding. Opt. Express 16(3), 1915–1922 (2008)

    Article  ADS  Google Scholar 

  • Zheng, S.J., Ghandeharic, M., Ou, J.P.: Photonic crystal fiber long-period grating absorption gas sensor based on a tunable erbium-doped fiber ring laser. Sens. Actuators. B: Chem. 223, 324–332 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 61475134, 61505175) and Cultivation Project of National Key Disciplines of Universities and Colleges in Hebei Province, China (Grant No. 626000125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuguang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Li, S., An, G. et al. Design of a polarization filtering photonic crystal fiber with a big gold-coated air hole. Opt Quant Electron 48, 457 (2016). https://doi.org/10.1007/s11082-016-0730-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0730-8

Keywords

Navigation