Advertisement

Optical transceiver with in-chip temperature compensation module design and fabrication

  • Jamshid Sangirov
  • Mohammad Rakib UddinEmail author
  • Gulomjon Sangirov
  • Ikechi Augustine Ukaegbu
  • Tae-Woo Lee
  • Hyo-Hoon Park
Article
  • 147 Downloads

Abstract

An optical transceiver module with in-chip temperature compensation has been implemented using a 0.13 µm complementary metal oxide semiconductor technology to demonstrate stable light emission with temperature variations. The TRx module works up to 6.125 Gbps data rate and achieves a BER of <10−12 with received power of −11 dBm and input power of −8.2 dBm for Tx and Rx, respectively, at room temperature (25 °C). A measured 3-dB bandwidth of 4.05 and 4.75 GHz are obtained for the transmitter and receiver, respectively. For a temperature increase of 25–100 °C, the temperature compensation effectively works for the Tx module with an increased power of 1.2 dB, whereas temperature uncompensated Rx module input power increases to 3.5 dB at 6.125 Gbps and BER of <10−12.

Keywords

VCSEL power control In-chip temperature sensing Temperature compensation Optical transceiver 

References

  1. Baveja, P.P., Kogel, B., Westbergh, P., Gustavsson, J.S., Haglund, A., Maywar, D.N., Agrawal, G.P., Larsson, A.: Impact of device parameters on thermal performance of high-hpeed oxide-confined 850-nm VCSELs. IEEE J. Quantum Electron. 48(1), 17–26 (2012)ADSCrossRefGoogle Scholar
  2. Huang, H.Y., Chien, J.C., Lu, L.H.: A 10-Gb/s inductorless CMOS limiting amplifier with third-order interleaving active feedback. IEEE J. Solid Stage Circuits 42(5), 1111–1120 (2007)CrossRefGoogle Scholar
  3. Kachris, C., Tomkos, I.: A survey on optical interconnects for data centers. IEEE Commun. Surv. Tutor. 14(4), 1021–1036 (2012)CrossRefGoogle Scholar
  4. Oh, W.S., Park, K.Y.: A 12.5-Gb/s optical transmitter using an auto-power and modulation control. J. Opt. Soc. Korea 13(4), 434–438 (2009)CrossRefGoogle Scholar
  5. Park, S.M., Yoo, H.J.: 1.25-Gb/s regulated cascode CMOS transimpedance amplifier for gigabit ethernet applications. IEEE J. Solid State Circuits 39, 112–121 (2004)CrossRefGoogle Scholar
  6. Pitwon, R.C.A., Wang, K., Jones, J.G., Papakonstantinou, I., Baghsiahi, H., Offrein, B.J., Dangel, R., Milward, D., Selviah, D.R.: FirstLight: pluggable optical interconnect technologies for polymeric electro-optical printed circuit boards in data centers. J. Lightwave Technol. 30(21), 3316–3329 (2012)ADSCrossRefGoogle Scholar
  7. Razavi, B.: Design of Integrated Circuits for Optical Communications. McGraw Hill, New York (2003)Google Scholar
  8. Sangirov, J., Park, T.-W., Ukaegbu, I.A., Lee, T.-W., Park, H.-H.: On-chip temperature compensation for optical transmitter modules. Electron. Lett. 49(2), 202–204 (2013a)CrossRefGoogle Scholar
  9. Sangirov, J., Ukaegbu, I.A., Lee, T.-W., Cho, M.H., Park, H.-H.: 10 Gbps transimpedance amplifier-receiver for optical interconnects. J. Opt. Soc. Korea 17(1), 44–49 (2013b)CrossRefGoogle Scholar
  10. Schow, C.L., Doany, F.E., Rylyakov, A.V., Lee, B.G., Jahnes, C.V., Kwark, Y.H., Baks, C.W., Kuchta, D.M., Kash, J.A.: A 24-channel, 300 Gb/s, 8.2 pJ/bit, full-duplex fiber-coupled optical transceiver module based on a single “Holey” CMOS IC. J. Lightwave Technol. 29(4), 542–553 (2011)ADSCrossRefGoogle Scholar
  11. Schubert, E.F., Tu, L.W., Zydik, G.J., Kopf, R.F., Benvenuti, A., Pinto, M.R.: Elimination of heterojunction band discontinuities by modulation doping. Appl. Phys. Lett. 60(4), 466–468 (1992)ADSCrossRefGoogle Scholar
  12. Westbergh, P., Gustavsson, J.S., Haglund, A., Skold, M., Joel, A., Larsson, A.: High-speed, low-current-density 850 nm VCSELs. IEEE J. Sel. Top. Quantum Electron. 15(3), 694–703 (2009)CrossRefGoogle Scholar
  13. Yokouchi, N., Iwai, N., Kasukawa, A.: Development of 850-nm VCSELs for high-speed interconnection systems. Proc. SPIE 4994, 189–196 (2003)ADSCrossRefGoogle Scholar
  14. Zhang, W., Wang, H., Bergman, K.: Next-generation optically-interconnected high-performance data centers. J. Lightwave Technol. 30(24), 3836–3844 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jamshid Sangirov
    • 1
  • Mohammad Rakib Uddin
    • 2
    Email author
  • Gulomjon Sangirov
    • 3
  • Ikechi Augustine Ukaegbu
    • 1
  • Tae-Woo Lee
    • 1
  • Hyo-Hoon Park
    • 1
  1. 1.Electrical Engineering DepartmentKAISTDaejeonKorea
  2. 2.Electrical and Electronic Engineering Department, Faculty of EngineeringUniversiti Teknologi Brunei (UTB)Bandar Seri BegawanBrunei Darussalam
  3. 3.Info and Comm Engineering DepartmentHarbin Engineering UniversityHarbinChina

Personalised recommendations