Skip to main content
Log in

Implementation of universal two- and three-qubit quantum gates in a cavity QED

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We propose two schemes to directly implement the iSWAP and Fredkin gates by passing an atom across a multi-mode cavity QED. We have combined three types of qubits: the flying photonic qubits, the atomic qubits and the dual-rail-encoded qubits. First, we have studied the interaction of multi-level atom with multi-mode fields in a cavity by using the shore’s method. Next we have calculated the probabilities of the states of the interest as well as the fidelity of theses two schemes. An appropriate interaction times, allow us to accomplish these two gates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alqahtani, M., Everitt, M., Garraway, B.: Cavity QED photons for quantum information processing. arXiv:hep-th/1407.0654. arXiv:abs/1407.0654v1 (2014)

  • Alqahtani, M.: Multi-photon processes in cavity qed. University of Sussex. http://sro.sussex.ac.uk/id/eprint/49632 (2014)

  • Barenco, A., Bennett, C., Cleve, R., DiVincenzo, D., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467 (1995)

    Article  ADS  Google Scholar 

  • Barnett, S.: Quantum Information. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  • Biswas, A., Agarwal, G.: Quantum logic gates using stark-shifted raman transitions in a cavity. Phys. Rev. A 69, 062306 (2004)

    Article  ADS  Google Scholar 

  • Chang, J., Zubairy, M.: Three-qubit phase gate based on cavity quantum electrodynamics. Phys. Rev. A 77(1), 012329 (2008)

    Article  ADS  Google Scholar 

  • Chuang, I., Yamamoto, Y.: Simple quantum computer. Phys. Rev. A 52, 3489 (1995)

    Article  ADS  Google Scholar 

  • Cook, R., Shore, B.: Coherent dynamics of n-level atoms and molecules. III. An analytically soluble periodic case. Phys. Rev. A 20, 539 (1979)

    Article  ADS  Google Scholar 

  • DiVincenzo, D.: Two-bit gates are universal for quantum computation. Phys. Rev. A 51(2), 1015–1022 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  • Duan, L., Kimble, H.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)

    Article  ADS  Google Scholar 

  • Everitt, M., Garraway, B.: Multimode quantum optical logic. In: Conference on Coherence and Quantum Optics, OSA Technical Digest (CD) (Optical Society of America), p. 456 (2007)

  • Everitt, M., Garraway, B.: Multiphoton resonances for all-optical quantum logic with multiple cavities. Phys. Rev. A 90, 012335 (2014)

    Article  ADS  Google Scholar 

  • Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21(3/4), 219–253 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Gotzinger, S., Menezes, LdS, Mazzei, A., Kuhn, S., Sandoghdar, V., Benson, O.: Controlled photon transfer between two individual nanoemitters via shared high-q modes of a microsphere resonator. Nano Lett. 6(6), 11511154 (2006)

    Article  Google Scholar 

  • Jaynes, E., Cummings, F.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89 (1963)

    Article  Google Scholar 

  • Joshi, A., Xiao, M.: Three-qubit quantum-gate operation in a cavity qed system. Phys. Rev. A 74, 052318 (2006)

    Article  ADS  Google Scholar 

  • Kempe, J., Bacon, D., DiVincenzo, D., Whaley, K.: Encoded universality from a single physical interaction. Quant. Inf. Comput. 1(4), 33–55 (2001)

    MathSciNet  MATH  Google Scholar 

  • Knill, E., Laflamme, R., Milburn, G.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)

    Article  ADS  MATH  Google Scholar 

  • Kok, P., Munro, W., Nemoto, K., Ralph, T., Dowling, J., Milburn, G.: Publisher’s note: linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007)

    Article  ADS  Google Scholar 

  • Kuhr, S., Gleyzes, S., Guerlin, C., Bernu, J., Ho, U., Del eglise, S., Osnaghi, S., Brune, M., Raimond, J., Haroche, S., Jacques, E., Bosland, P., Visentin, B.: Ultrahigh finesse fabry-prot superconducting resonator. Appl. Phys. Lett. 90, 164101 (2007)

    Article  ADS  Google Scholar 

  • Lee, H., Chen, T., Li, J., Yang, K., Jeon, S., Painter, O., Vahala, K.: Chemically etched ultrahigh-q wedge-resonator on a silicon chip. Nat. Photon. 6, 369373 (2012)

    Article  Google Scholar 

  • Lin, X., Zhou, Z., Ye, M., Xiao, Y., Guo, G.: One-step implementation of a multiqubit controlled-phase-flip gate. Phys. Rev. A 73, 012323 (2006)

    Article  ADS  Google Scholar 

  • Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information, 1st edn. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  • O’Brien, J.: Optical quantum computing. Science 318, 1567 (2007)

    Article  ADS  Google Scholar 

  • Pellizzari, T., Gardiner, S., Cirac, J., Zoller, P.: Decoherence, continuous observation, and quantum computing: a cavity qed model. Phys. Rev. Lett. 75, 3788 (1995)

    Article  ADS  Google Scholar 

  • Raimond, J., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Rauschenbeutel, A., Nogues, G., Osnaghi, S., Bertet, P., Brune, M., Raimond, J., Haroche, S.: Coherent operation of a tunable quantum phase gate in cavity qed. Phys. Rev. Lett. 83, 5166 (1999)

    Article  ADS  Google Scholar 

  • Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86(22), 5188–5191 (2001)

    Article  ADS  Google Scholar 

  • Schuch, N., Siewert, J.: Natural two-qubit gate for quantum computation using the XY interaction. Phys. Rev. A 67, 032301 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  • Shore, B.: Two-level behavior of coherent excitation of multilevel systems. Phys. Rev. A 24, 1413 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  • Tanamoto, T., Liu, Y., Hu, X., Nori, F.: Efficient quantum circuits for one-way quantum computing. Phys. Rev. Lett. 102(10), 100501 (2009)

    Article  ADS  Google Scholar 

  • Walther, P., Resch, K., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V., Aspelmeyer, M., Zeilinger, A.: Experimental one-way quantum computing. Nature 434, 169–176 (2005)

    Article  ADS  Google Scholar 

  • Walther, H., Varcoe, B., Englert, B., Becker, T.: Cavity quantum electrodynamics. Rep. Prog. Phys. 69(5), 1325 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bennai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouikh, A., Said, T., Essammouni, K. et al. Implementation of universal two- and three-qubit quantum gates in a cavity QED. Opt Quant Electron 48, 463 (2016). https://doi.org/10.1007/s11082-016-0717-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0717-5

Keywords

Navigation