Skip to main content
Log in

Identification of organic dyes by surface-enhanced Raman scattering in nano-composite agar-gel matrices: evaluation of the enhancement factor

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The aim of this work is to improve our understanding of the new possibilities offered by a micro-extraction/surface-enhanced Raman scattering (SERS) identification method for organic dyes used in artworks. Recently, we have shown how it is possible to use a tailor-made extraction process of the dyes present on different kind of substrates by using a nanocomposite hydrogel matrix containing silver nanoparticles, without detriment for the original samples. After minor processing, we identified the extracted dyes thanks to the clear bands in their SERS spectrum, and the comparison with data on reference materials. A usual drawback in SERS/Raman experiments is the lack of information on the sensitivity of the method. Sometimes, quantitative information in SERS is obtained, mostly while working in solution, either with samples of known concentration of the analytes or in presence of an internal standard. Here, in order to obtain similar information on our samples, some specific methods are applied to gain information on the SERS enhancement factor for a reference dye molecule. We report new data on the efficiency of the SERS process for the identification of organic dyes extracted by an agar hydrogel matrix containing silver nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aroca, R.: Surface-enhanced vibrational spectroscopy. Wiley (2007)

  • Berrie, B.H.: Rethinking the history of artists’ pigments through chemical analysis. Annu. Rev. Anal. Chem. 5, 441–459 (2012)

    Article  Google Scholar 

  • Burgio, L., Clark, R.J.H.: Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of raman spectra of pigments with visible excitation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 57(7), 1491–1521 (2001)

    Article  ADS  Google Scholar 

  • Casadio, F., Leona, M., Lombardi, J.R., Van Duyne, R.P.: Identification of organic colorants in fibers, paints, and glazes by surface enhanced Raman spectroscopy. Acc. Chem. Res. 43(6), 782–791 (2010)

    Article  Google Scholar 

  • Degano, I., Ribechini, E., Modugno, F., Colombini, M.P.: Analytical methods for the characterization of organic dyes in artworks and in historical textiles. Appl. Spectrosc. Rev. 44(5), 363–410 (2009)

    Article  ADS  Google Scholar 

  • Dieringer, J.A., Lettan, R.B., Scheidt, K.A., Van Duyne, R.P.: A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 129(51), 16249–16256 (2007)

    Article  Google Scholar 

  • Doherty, B., Brunetti, B.G., Sgamellotti, A., Miliani, C.: A Detachable sers active cellulose film: a minimally invasive approach to the study of painting lakes. J. Raman Spectrosc. 42(11), 1932–1938 (2011)

    Article  ADS  Google Scholar 

  • Evanoff, D.D., Chumanov, G.: Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections. J. Phys. Chem. B 108(37), 13957–13962 (2004)

    Article  Google Scholar 

  • Feis, A., Gellini, C., Salvi, P.R., Becucci, M.: Photoacoustic excitation profiles of gold nanoparticles. Photoacoustics 2(1), 47–53 (2014)

    Article  Google Scholar 

  • Gong, Z., Wang, C., Pu, S., Wang, C., Cheng, F., Wang, Y., Fan, M.: Rapid and direct detection of illicit dyes on tainted fruit peel using PVA hydrogel surface enhanced Raman scattering substrate. Anal. Methods 8, 4816–4820 (2016)

    Article  Google Scholar 

  • Gong, Z., Wang, C., Wang, C., Tang, C., Cheng, F., Du, H., Fan, M., Brolo, A.G.: A Silver nanoparticle embedded hydrogel as a substrate for surface contamination analysis by surface-enhanced Raman scattering. Analyst 139(20), 5283–5289 (2014)

    Article  ADS  Google Scholar 

  • Idone, A., Aceto, M., Diana, E., Appolonia, L., Gulmini, M.: Surface-enhanced Raman scattering for the analysis of red lake pigments in painting layers mounted in cross sections. J. Raman Spectrosc. 45(11–12), 1127–1132 (2014)

    Article  ADS  Google Scholar 

  • Kneipp, K., Moskovits, M., Kneipp, H.: Surface-Enhanced Raman Scattering: Physics and Applications, Topics in Applied Physics, vol. 103. Springer, Heidelberg (2006)

  • Kneipp, K., Wang, Y., Kneipp, H., Perelman, L.T., Itzkan, I., Dasari, R.R., Feld, M.S.: Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78(9), 1667–1670 (1997)

    Article  ADS  Google Scholar 

  • Le Ru, E.C., Blackie, E., Meyer, M., Etchegoin, P.G.: Surface enhanced Raman scattering enhancement factors: a comprehensive study. J. Phys. Chem. C 111(37), 13794–13803 (2007)

    Article  Google Scholar 

  • Le Ru, E.C., Etchegoin, P.G.: Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy. Chem. Phys. Lett. 423(1–3), 63–66 (2006)

  • Le Ru, E.C., Meyer, M., Etchegoin, P.G.: Proof of Single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique. J. Phys. Chem. B 110(4), 1944–1948 (2006)

    Article  Google Scholar 

  • Le Ru, E.C., Etchegoin, P.G.: Principles of Surface-Enhanced Raman Spectroscopy. Elsevier Science, Amsterdam (2009)

    Google Scholar 

  • Lee, P.C., Meisel, D.: Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 86(17), 3391–3395 (1982)

    Article  Google Scholar 

  • Leona, M.: Microanalysis of organic pigments and glazes in polychrome works of art by surface-enhanced resonance Raman scattering. Proc. Natl. Acad. Sci. USA 106(35), 14757–14762 (2009)

    Article  ADS  Google Scholar 

  • Leona, M., Stenger, J., Ferloni, E.: Application of Surface-enhanced Raman scattering techniques to the ultrasensitive identification of natural dyes in works of art. J. Raman Spectrosc. 37(10), 981–992 (2006)

    Article  ADS  Google Scholar 

  • Lin, X., Hasi, W., Lou, X., Lin, S., Yang, F., Jia, B., Lin, D., Lu, Z.: Droplet detection: simplification and optimization of detecting conditions towards high sensitivity quantitative determination of melamine in milk without any pretreatment. RSC Adv. 4(93), 51315–51320 (2014)

    Article  Google Scholar 

  • Lofrumento, C., Arci, F., Carlesi, S., Ricci, M., Castellucci, E., Becucci, M.: Safranin-O dye in the ground state. A study by density functional theory, Raman, SERS and infrared spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 137, 677–684 (2015)

    Article  ADS  Google Scholar 

  • Lofrumento, C., Prati, S., Ricci, M., Bonacini, I., Quaranta, M., Sciutto, G., Ballarin, B., Cassani, M.C., Castellucci, E., Mazzeo, R.: Identification of dyes in toned and tinted xx century cinematographic films by surface enhanced Raman spectroscopy. J. Raman Spectrosc. 47(3), 337–344 (2016a)

    Article  ADS  Google Scholar 

  • Lofrumento, C., Platania, E., Ricci, M., Becucci, M., Castellucci, E.M.: SERS spectra of Alizarin Anion–Ag N (N = 2, 4, 14) Systems: TDDFT calculation and comparison with experiment. J. Phys. Chem. C 120, 12234–12241 (2016b)

    Article  Google Scholar 

  • Lofrumento, C., Ricci, M., Platania, E., Becucci, M., Castellucci, E.: SERS detection of red organic dyes in Ag-Agar gel. J. Raman Spectrosc. 44(1), 47–54 (2013)

    Article  ADS  Google Scholar 

  • Mock, J.J., Barbic, M., Smith, D.R., Schultz, D.A., Schultz, S.: shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 116(15), 6755 (2002)

    Article  ADS  Google Scholar 

  • Muehlethaler, C., Leona, M., Lombardi, J.R.: Review of surface enhanced Raman scattering applications in forensic science. Anal. Chem. 88(1), 152–169 (2015)

    Article  Google Scholar 

  • Murcia-Mascarós, S., Domingo, C., Sanchez-Cortes, S., Cañamares, M.V., Garcia-Ramos, J.V.: Spectroscopic identification of alizarin in a mixture of organic red dyes by incorporation in Zr-Ormosil. J. Raman Spectrosc. 36(5), 420–426 (2005)

    Article  ADS  Google Scholar 

  • Platania, E., Lombardi, J.R., Leona, M., Shibayama, N., Lofrumento, C., Ricci, M., Becucci, M., Castellucci, E.: Suitability of Ag-Agar gel for the microextraction of organic dyes on different substrates: the case study of wool, silk, printed cotton and a panel painting mock-up. J. Raman Spectrosc. 45(11–12), 1133–1139 (2014)

    Article  ADS  Google Scholar 

  • Platania, E., Lofrumento, C., Lottini, E., Azzaro, E., Ricci, M., Becucci, M.: Tailored micro-extraction method for Raman/sers detection of indigoids in ancient textiles. Anal. Bioanal. Chem. 407(21), 6505–6514 (2015)

    Article  Google Scholar 

  • Ricci, M., Lofrumento, C., Castellucci, E.M., Becucci, M.: Microanalysis of organic pigments in ancient textiles by surface-enhanced Raman scattering on agar gel matrices. J. Spectrosc. 2016, 1380105 (2016a)

    Article  Google Scholar 

  • Ricci, M., Platania, E., Lofrumento, C., Castellucci, E., Becucci, M.: Resonance Raman spectra of O-Safranin dye, free and adsorbed on silver nanoparticles: experiment and density functional theory calculation. J. Phys. Chem. A 120, 5307–5314 (2016b)

    Article  Google Scholar 

  • Schlücker, S.: Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications. Wiley, Hoboken (2011)

    Google Scholar 

  • Solomon, S.D., Bahadory, M., Jeyarajasingam, A.V., Rutkowsky, S.A., Boritz, C., Mulfinger, L.: Synthesis and study of silver nanoparticles. J. Chem. Educ. 84(2), 322–325 (2007)

    Article  Google Scholar 

  • Stiles, P.L., Dieringer, J.A., Shah, N.C., Van Duyne, R.P.: Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1(1), 601–626 (2008)

    Article  Google Scholar 

  • van Bommel, M.R., Vanden Berghe, I., Wallert, A.M., Boitelle, R., Wouters, J.: High-performance liquid chromatography and non-destructive three-dimensional fluorescence analysis of early synthetic dyes. J. Chromatogr. A 1157(1–2), 260–272 (2007)

    Article  Google Scholar 

  • Yurkin, M.A., Hoekstra, A.G., Brock, R.S., Lu, J.Q.: Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers. Opt. Express 15(26), 17902–17911 (2007)

    Article  ADS  Google Scholar 

  • Zhao, L., Jensen, L., Schatz, G.C.: Pyridine-Ag20 cluster: a model system for studying surface-enhanced Raman scattering. J. Am. Chem. Soc. 128(9), 2911–2919 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from Ente Cassa di Risparmio di Firenze (Grant No. 2014.0405A2202.8044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Becucci.

Additional information

This article is part of the Topical Collection on Fundamentals of Laser Assisted Micro- & Nanotechnologies.

Guest edited by Eugene Avrutin, Vadim Veiko, Tigran Vartanyan and Andrey Belikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becucci, M., Ricci, M., Lofrumento, C. et al. Identification of organic dyes by surface-enhanced Raman scattering in nano-composite agar-gel matrices: evaluation of the enhancement factor. Opt Quant Electron 48, 449 (2016). https://doi.org/10.1007/s11082-016-0696-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0696-6

Keywords

Navigation