Skip to main content
Log in

Self-consistent analytical model of the radial temperature profile of a high-powered He–SrBr2 laser

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

There is significant practical interest in the determining of the thermal parameters of metal vapor and metal vapor halide lasers. This study develops a self-consistent analytical model determining the radial temperature profile of a high-powered strontium bromide (SrBr2) vapor laser, emitting in the infrared spectrum. The model is built under the assumption of arbitrary distribution of power density for the internal heat source without any given specific experiment measurements. It makes it possible to evaluate the nature of the main physical processes of the transfer of heat from the center of the tube to its interaction with the ambient environment. An exact solution of a heat conduction equation with first- and second-order boundary conditions is applied for the active laser medium. New boundary conditions are proposed, including third and fourth order ones, taking into account the various heat transfer processes through the layers of the gas discharge tube. Structural materials, the thermal conductivity of the helium layer between the ceramic and quartz tubes, the transmittance of heat in the outer quartz tube and suitable boundary conditions for the thermal insulation and the ambient environment are taken into consideration. The model is applied to calculate the temperature distribution within the laser tube of an existing high-powered SrBr2 laser in the case of natural convection. Very good fit is achieved with the experiment. The model is applicable for preliminary evaluation of the temperature profile of both existing and new metal vapor and other similar laser devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Auerhammer, J.M., Walker, R., Van der Meer, A.F.G., Jean, B.: Dynamic behavior of photoablation products of corneal tissue in the mid-IR: a study with FELIX. Appl. Phys. B Lasers Opt. 68, 111–119 (1999). doi:10.1007/s003400050595

    Article  ADS  Google Scholar 

  • Carman, R.J.: A self-consistent model for a longitudinal discharge excited He–Sr recombination laser. IEEE J. Quantum Electron. 26, 1588–1608 (1990). doi:10.1109/3.102639

    Article  ADS  Google Scholar 

  • Chebotarev, G.D., Latush, E.L., Prutsakov, O.O., Fesenko, A.A.: Kinetics of the active medium of a He–Sr+ recombination laser: 1. Spatiotemporal characteristics. Quantum Electron. 38, 299–308 (2008a). doi:10.1070/QE2008v038n04ABEH013697

    Article  ADS  Google Scholar 

  • Chebotarev, G.D., Latush, E.L., Fesenko, A.A.: Kinetics of the active medium of a He–Sr+ recombination laser: 2. Achievable energy characteristics. Quantum Electron. 38, 309–318 (2008b). doi:10.1070/QE2008v038n04ABEH013698

    Article  ADS  Google Scholar 

  • Chebotarev, G.D., Prutsakov, O.O., Latush, E.L.: Mathematical modeling of ion recombination strontium vapor laser. In: Tarasenko, V.F. (ed.) Atomic and Molecular Pulsed Lasers V. Proceedings of SPIE, vol. 5483, pp. 83–103 (2004). doi:10.1117/12.562966

  • Edwards, G., Logan, R., Copeland, M., Reinisch, L., Davidson, J., Johnson, B., Maciunas, R., Mendenhall, M., Ossoff, R., Tribble, J., Werkhaven, J., O’Day, D.: Tissue ablation by a free-electron laser tuned to the amide II band. Nature 371, 416–419 (1994). doi:10.1038/371416a0

    Article  ADS  Google Scholar 

  • Gocheva-Ilieva, S.G.: Mathematical modelling and simulation of radial temperature profile of strontium bromide lasers. In: Proceedings of International Science Conference REMIA’2010 (2010). http://hdl.handle.net/10525/1468. Accessed 1 June 2016

  • Iliev, I., Gocheva-Ilieva, S., Temelkov, K., Vuchkov, N., Sabotinov, N.: Temperature model of high-powered SrBr2 laser. In: Todorov, M.D., Christov, C.I. (eds.) American Institute of Physics, Conference Proceedings, vol. 1301, pp. 138–145 (2010). doi:10.1063/1.3526607

  • Iliev, I.P., Gocheva-Ilieva, S.G., Temelkov, K.A., Vuchkov, N.K., Sabotinov, N.V.: Analytical model of temperature profile for a He–SrBr2 laser. Optoelectron. Adv. Mater. 11(11), 1735–1742 (2009)

    MATH  Google Scholar 

  • Iliev, I.P., Gocheva-Ilieva, S.G., Temelkov, K.A., Vuchkov, N.K., Sabotinov, N.V.: An improved radial temperature model of a high-powered He–SrBr2 laser. Opt. Laser Technol. 43, 642–647 (2011). doi:10.1016/j.optlastec.2010.09.005

    Article  ADS  Google Scholar 

  • Kushner, M.J., Warner, B.E.: Large bore copper vapor lasers: kinetics and scaling issues. J. Appl. Phys. 54, 2970–2982 (1983). doi:10.1063/1.332499

    Article  ADS  Google Scholar 

  • Li, C., BangNing, M., YuBo, W., LiMing, W., BaiLiang, P.: A kinetic model for alternate oscillation of self-terminating and recombination lasers in strontium ions. Opt. Commun. 281, 1211–1216 (2008). doi:10.1016/j.optcom.2007.10.073

    Article  Google Scholar 

  • Mineral wool insulation. The Engineering ToolBox. http://www.engineeringtoolbox.com/mineral-wool-insulation-k-values-d_815.html. Accessed 1 June 2016

  • Optics transmission of crystal quartz. http://www.tydexoptics.com/materials1/for_transmission_optics/crystal_quartz/. Accessed June 2016

  • Özişik, M.N.: Heat Transfer. A Basic Approach. McGraw-Hill, Boston (1985)

    MATH  Google Scholar 

  • Peavy, G.M., Reinisch, L., Rayne, G.T., Venugopalan, V.: Comparison of cortical bone ablations by using infrared laser wavelength 2.9 to 9.2 μm. Laser Surg. Med. 25, 421–434 (1999). doi:10.1002/(SICI)1096-9101

    Article  Google Scholar 

  • Temelkov, K.A., Vuchkov, N.K., Freijo-Martin, I., Lema, A., Lyutov, L., Sabotinov, N.V.: Experimental study on the spectral and spatial characteristics of a high-power He–SrBr2 laser. J. Phys. D Appl. Phys. 42, 115105 (2009a). doi:10.1088/0022-3727/42/11/115105

    Article  ADS  Google Scholar 

  • Temelkov, K.A., Vuchkov, N.K., Mao, B., Atanasov, E.P., Lyutov, L., Sabotinov, N.V.: High-power Sr atom laser excited in nanosecond pulsed longitudinal He–SrBr2 discharge. IEEE J. Quantum Electron. 45, 278–281 (2009b). doi:10.1109/JQE.2009.2013117

    Article  ADS  Google Scholar 

  • Temelkov, K.A., Vuchkov, N.K., Pan, B.L., Sabotinov, N.V., Ivanov, B., Lyutov, L.: Strontium atom laser excited by nanosecond pulsed longitudinal He–SrBr2 discharge. J. Phys. D Appl. Phys. 39, 3769–3772 (2006). doi:10.1088/0022-3727/39/17/010

    Article  ADS  Google Scholar 

  • Temelkov, K.A., Vuchkov, N.K., Pan, B.L., Sabotinov, N.V., Ivanov, B., Lyutov, L.: Strontium bromide vapor laser excited by a nanosecond pulsed longitudinal discharge. In: Atanasov, P.A., Dreischuh, T.N., Gateva, S.V., Kovachev, L.M. (eds.) Proceedings of SPIE, pp. 660410–660411 (2007)

  • Vuchkov, N., Temelkov, K., Sabotinov, N.: Laser tube for strontium infrared laser with strontium halide vapours. BG patent No. 66247 (2012)

Download references

Acknowledgments

The study is partially supported by the Project NI15-FMI-004 of the Bulgarian Ministry of Education and Science and NPD of Plovdiv University “Paisii Hilendarski”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snezhana Georgieva Gocheva-Ilieva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iliev, I.P., Gocheva-Ilieva, S.G. Self-consistent analytical model of the radial temperature profile of a high-powered He–SrBr2 laser. Opt Quant Electron 48, 397 (2016). https://doi.org/10.1007/s11082-016-0665-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0665-0

Keywords

Mathematics Subject Classification

Navigation