Skip to main content
Log in

Optical properties of intermixed vertical cavity surface emitting lasers: a theoretical model

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The effect of intermixing on some important optical properties of vertical cavity surface emitting lasers (VCSELs) has been successfully modeled and analyzed. A combined superposition of the error function solution to the diffusion equation for a hypothetical Al x Ga1−x As/GaAs VCSEL structure has been applied to simulate the intermixing process during growth or post-growth thermal annealing using a depth-independent and/or a depth-dependent interdiffusion coefficient. The simulations of the VCSEL reflectivity and phase shift revealed no appreciable difference between the two assumptions. It has been shown that for diffusion lengths of about 20 nm the overall VCSEL reflectivity and phase shift does not change significantly, however, the VCSEL bandwidth was shown to decrease at relatively small diffusion length. The width of the transmission “dip”, which is the VCSEL emission wavelength was also shown to increase with increasing diffusion length indicating an appreciable intermixing of the active region and hence different conduction and valence band transitions due to modifications in the quantum wells and barriers shapes and widths. The presented model may provide a simple yet versatile technique for the analysis of interdiffusion during VCSEL growth or post-growth thermal annealing for device efficiency and optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adachi, S.: GaAs, AlAs, and Al x Ga1−x As material parameters for use in research and device applications. J. Appl. Phys. 58(3), R1–R29 (1985)

    Article  ADS  Google Scholar 

  • Cohen, M.I., Tan, H.H., Jagadish, C.: Intermixing-induced resonance shift in GaAs/Al x O y distributed Bragg resonators. J. Appl. Phys. 85, 7964–7966 (1999)

    Article  ADS  Google Scholar 

  • Coldren, L.A., Corzine, S.W.: Diode Lasers and Photonic Integrated Circuits, pp. 1–24. Wiley, New York (1995)

    Google Scholar 

  • Crank, J.: The Mathematics of Diffusion, pp. 11–17. Oxford University Press, Oxford (1975)

    Google Scholar 

  • Dier, O., Reindl, C., Bachmann, A., Lauer, C., Lim, T., Kashani-Shirazi, K.: Reduction of hetero-interface resistivity in n-type AlAsSb/GaSb distributed Bragg reflectors. Semicond. Sci. Technol. 23, 5018–5021 (2008)

    Article  Google Scholar 

  • Floyd, P.D., Merz, J.L.: Optical properties of disordered GaAs/(Al,Ga)As distributed Bragg reflectors. J. Appl. Phys. 76, 7666–7668 (1994)

    Article  ADS  Google Scholar 

  • Hanamaki, Y., Akiyama, H., Shiraki, Y.: Spontaneous emission alteration in InGaAs/GaAs vertical cavity surface emitting laser (VCSEL) structures. Semicond. Sci. Technol. 14, 797–803 (1999)

    Article  ADS  Google Scholar 

  • Hecht, J.: Optical networking: vertical-cavity surface-emitting. Laser Focus World 37(2), 102–142 (2001)

    MathSciNet  Google Scholar 

  • Jewell, J., Graham, L., Crom, M., Maranowski, K., Smith, J., Fanning, T.: 1310 nm VCSELs in 1–10 Gb/s commercial applications. Proc. SPIE 6132, 204–206 (2006)

    Google Scholar 

  • Khreis, O.M.: Modeling interdiffusion in semiconductor distributed Bragg reflectors: an analytical approach. Superlattices Microstruct. 52, 913–920 (2012)

    Article  ADS  Google Scholar 

  • Khreis, O.M., Elhassan, A.: A coupled-mode theory analysis of intermixing in semiconductor distributed Bragg reflectors. Opt. Quantum Electron. 45, 937–946 (2013)

    Article  Google Scholar 

  • Lai, F.-I., Hsueh, T.-H., Chang, Y.-H., Shu, W.-C., Lai, L.-H., Kuo, H.C., Wang, S.C.: Performance of 850 nm AlGaAs/GaAs implanted VCSELs utilizing silicon implantation induced disordering. Solid-State Electron. 47, 1805–1809 (2003)

    Article  ADS  Google Scholar 

  • Larsson, A., Gustavsson, J.S., Haglund, A., Bengtsson, J., Kogel, B., Westbergh, V., Safaisini, R., Haglund, E., Szczerba, K., Karlsson, M., Andrekson, P.A.: High speed VCSELs for optical interconnects. In: Proceedings of Indium Phosphide and Related Materials (IPRM) International Conference on High Speed VCSELs for Optical Interconnects. 6403375, pp. 269–272 (2012)

  • Linnik, M., Christou, A.: AlGaInAs/InP highly refractive mirrors for VCSEL applications at 1.55 mirons. Proc. SPIE- Int. Soc. Opt. Eng. 4278, 125–131 (2001)

    Google Scholar 

  • Man, W.M., Yu, S.-F.: Comprehensive modeling of diffused quantum-well vertical-cavity surface-emitting lasers. IEEE J. Sel. Top. Quantum Electron. 4, 715–722 (1998)

    Article  Google Scholar 

  • Miyamoto, T.: Intermixing technologies for small VCSELs and fine oxidation structures. In: Asia Communications and Photonics Conference 2013, pp. 1–3. OSA Technical Digest (Optical Society of America), paper AF1B.1 (2013)

  • Murty Ramana M.V., Giovane, L., Ray, S.K., Chew, K.L., Crom, M.V., Sale, T.E., Sridhara, A., Zhao, C., Chen, C., Fanning, T.R.: VCSELS for high-speed data networks. In: Proceedings of the SPIE 8639, Vertical-Cavity Surface-Emitting Lasers XVII, 863902, pp. 902–904 (2013)

  • Nakwaski, W.: VCSEL structures used to suppress higher-order transverse modes. Opto-Electron. Rev. 19, 119–129 (2011)

    Article  ADS  Google Scholar 

  • Ooi, B.S., Ayling, S.G., Bryce, A.C., Marsh, J.H.: Fabrication of ultiple wavelength lasers in GaAs–AlGaAs structures using a one-step spatially controlled quantum-well intermixing technique. IEEE Photon. Technol. Lett. 7, 944–946 (1995)

    Article  ADS  Google Scholar 

  • Weber, J.-P., Malloy, K., Wang, S.: Effects of layer thickness variations on vertical-cavity surface-emitting DBR semiconductor lasers. IEEE Photon. Technol. Lett. 2, 162–164 (1990)

    Article  ADS  Google Scholar 

  • Yeh, P.: Optical Waves in Layered Media, pp. 102–142. Wiley, Hoboken (2005)

    Google Scholar 

  • Yu, S.F., Chui, P.C.: Proposed enhancement of single mode operation in VCSELs using diffused quantum well structure. Opt. Quantum Electron. 30, 71–77 (1998)

    Article  Google Scholar 

  • Yu, S.F., Li, E.H.: Semiconductor lasers using diffused quantum-well structures. IEEE J. Sel. Top. Quantum Electron. 4, 723–735 (1998)

    Article  Google Scholar 

  • Zhang, Z., Marcks vonWurtemberg, R., Berggren, J., Hammar, M.: Optical loss and interface morphology in AlGaAs/GaAs distributed Bragg reflectors. App. Phys. Lett. 91, 101101 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Khreis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khreis, O.M., Al-Omari, A.N. Optical properties of intermixed vertical cavity surface emitting lasers: a theoretical model. Opt Quant Electron 48, 387 (2016). https://doi.org/10.1007/s11082-016-0655-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0655-2

Keywords

Navigation