Simulation and design of arrayed waveguide gratings for InP membranes using an efficient numerical method and improved shallow to deep transitions

  • B. Gargallo
  • Y. Jiao
  • P. Muñoz
  • J. van der Tol
  • X. Leijtens
Article
Part of the following topical collections:
  1. Optical Wave & Waveguide Theory and Numerical Modelling 2015

Abstract

We analyze the arrayed waveguide grating response on indium phosphide (InP) membranes on silicon (IMOS) technology. The model is based on an analytical approach (Kleijn et al. in Nat Photon 1:303–305, 2013) that provides a better accuracy than the Gaussian approximation for similar simulation times. Improved shallow to deep transitions to avoid possible layer misalignments are also presented and simulated.

Keywords

Arrayed waveguide grating Integrated optics devices Wave optics 

Notes

Acknowledgments

B. Gargallo acknowledges financial support through FPI Grant BES-2011-046100.

References

  1. Chiang, K.: Performance of the effective-index method for the analysis of dielectric waveguides. Opt. Lett. 16, 714–716 (1991)ADSCrossRefGoogle Scholar
  2. den Besten, J., Dessens, M., Herben, C., Leijtens, X., Groen, F., Leys, M., Smit, M.: Low-loss, compact, and polarization independent PHASAR demultiplexer fabricated by using a double-etch process. Photon. Technol. Lett. 14, 62–64 (2002)ADSCrossRefGoogle Scholar
  3. Dragone, C.: Efficient NxN star couplers using Fourier optics. J. Lightw. Technol. 7, 479–489 (1989)ADSCrossRefGoogle Scholar
  4. Dragone, C., Edwards, C.A., Kistler, R.C.: Integrated optics NxN multiplexer on silicon. IEEE Photon. Technol. Lett. 3, 896–899 (1991)ADSCrossRefGoogle Scholar
  5. FIMMPROP, Photon Design, http://www.photond.com
  6. Kirchain, R., Kimerling, L.: A roadmap for nanophotonics. Nat. Photon. 1, 303–305 (2007)ADSCrossRefGoogle Scholar
  7. Kleijn, E., Smit, M., Leijtens, X.: New analytical arrayed waveguide grating model. J. Lightw. Technol. 31, 3309–3314 (2013)ADSCrossRefGoogle Scholar
  8. Knox, R., Toulios, P.: Integrated circuits for the millimeter through optical frequency range. In: Proceedings of MRI Symposium of Submillimeter Waves, ed. Polythecnic, New York (1970)Google Scholar
  9. Maat, P.: InP-based integrated MZI switches for optical communication, Ph.D. Thesis (2001)Google Scholar
  10. Marcatili, E.: Dielectric rectangular waveguide and directional coupler for integrated optics. Bell Syst. Tech. J. 48, 2071–2102 (1969)CrossRefGoogle Scholar
  11. Milton, A., Burns, W.: Mode coupling in optical parabolic horns. IEEE J. Quant. Electron. 13, 828–835 (1977)ADSCrossRefGoogle Scholar
  12. Muñoz, P., Pastor, D., Capmany, J.: Modeling and design of arrayed waveguide gratings. J. Lightw. Technol. 20, 661–674 (2002)ADSCrossRefGoogle Scholar
  13. OptoDesigner\(^{TM}\), PhoeniX Software BV, http://www.phoenixbv.com
  14. Smit, M., et al.: An introduction to InP-based generic integration technology. Semicond. Sci. Technol. 29, 083001 (2014)ADSCrossRefGoogle Scholar
  15. Smit, M., van Dam, C.: Phasar-based WDM-devices: principles, design and applications. J. Sel. Topics Quantum Electron. 2, 236–250 (1996)CrossRefGoogle Scholar
  16. van Dam, C., Staring, A., Jansen, E., Binsma, J., van Dongen, T., Smit, M., Verbeek, B.: Loss reduction for phased-array demultiplexers using a double etch technique. In: Integrated Photonics Research 6 paper IMC6, OSA Technical Digest Series (1996)Google Scholar
  17. van der Tol, J., Pello, J., Bhat, S., Jiao, Y., Heiss, D., Roelkens, G., Ambrosius, H., Smit, M.: Photonic integration in indium-phosphide membranes on silicon (IMOS). In: Proc. SPIE 8988, Paper 89880M (2014)Google Scholar
  18. Westerveld, W., Leinders, S., van Dongen, K., Urbach, H., Yousefi, M.: Extension of Marcatili’s analytical approach for rectangular silicon optical waveguides. J. Lightw. Technol. 30, 2388–2401 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • B. Gargallo
    • 1
  • Y. Jiao
    • 2
  • P. Muñoz
    • 1
  • J. van der Tol
    • 2
  • X. Leijtens
    • 2
  1. 1.iTEAM Research InstituteUniversitat Politècnica de ValènciaValenciaSpain
  2. 2.COBRA Research InstituteEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations