Skip to main content
Log in

Terahertz radiation generation process in the medium based on the array of the noninteracting nanotubes

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Consideration of periodically alternating arrays of noninteracting carbon nanotubes with the metal type of conductivity as elements of the quantum layer heterostructures (quantum wells), which will play the role of the active field, is suggested. From the earlier obtained results based on the models of the elementary cell, it follows that the system in the neighborhood of the Dirac points at the presence of the longitudinal electric field will have equidistant spectrum. The eigenvalues of the energies do not depending on the longitudinal electric field. The two-component eigenfunctions do not depend on the longitudinal electric field. The amplification of the generation terahertz radiation by the analogy with the cascade lasers in the multilevel medium, based on the system of the noninteracting metallic carbon, is considered. If concentration of the nanotubes is 107 cm−2 then the output power per unit area will be about \(Q \sim n_{0} k_{0} \hbar \omega J_{k} /e \approx 8\;{\text {W}}/{\text {cm}}^{2}\). The wavelength of the terahertz radiation is 65 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Barbieri, S., Ravaro, M., Gellie, P., Santarelli, G., Manquest, C., Sirtori, C., Knahna, S.P., Linfield, E.H., Davies, A.G.: Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis. Nat. Photonics 5, 306–313 (2011)

    Article  ADS  Google Scholar 

  • Buttiker, M.: Scattering theory of current and intensity noise correlations in conductors and wave guides. Phys. Rev. B 46, 12485–12507 (1992)

    Article  ADS  Google Scholar 

  • Capasso, F., Gmachl, C., Sivco, D.L., Cho, A.Y.: Quantum cascade lasers. Phys. World 12, 27–34 (1999)

    Article  Google Scholar 

  • Carr, G.L., Martin, M.C., McKinney, W.R., Jordan, K., Neil, G.R., Williams, G.P.: High-power terahertz radiation from relativistic electrons. Nature 420, 153–156 (2002)

    Article  ADS  Google Scholar 

  • Colombelli, R., Capasso, F., Gmachl, C., Hutchinson, A.L., Sivco, D.L., Tredicucci, A., Wanke, M.C., Sergent, A.M., Cho, A.Y.: Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths. Appl. Phys. Lett. 78, 2620–2622 (2001)

    Article  ADS  Google Scholar 

  • Faist, J., et al.: Continuous wave operation of a vertical transition quantum cascade laser above T = 80 K. Appl. Phys. Lett. 67, 3057–3059 (1995a)

    Article  ADS  Google Scholar 

  • Faist, J., Capasso, F., Sirtori, C., Sivco, D.L., Baillargeon, J.N., Hutchinson, A.L., Chu, S.-N.G., Cho, A.Y.: High power mid-infrared (λ~5 μm) quantum cascade lasers operating above room temperature. Appl. Phys. Lett. 68, 3680–3682 (1996)

    Article  ADS  Google Scholar 

  • Faist, J., Capasso, F., Sirtori, C., Sivco, D.L., Hutchinson, A.L., Cho, A.Y.: Vertical transition quantum cascade laser with bragg confined excited state. Appl. Phys. Lett. 66, 538–540 (1995b)

    Article  ADS  Google Scholar 

  • Faist, J., Capasso, E., Sivico, D.: Quantum cascade laser. Science 264, 553–556 (1994)

    Article  ADS  Google Scholar 

  • Freeman, J., Maysonnave, J., Jukam, N., Cavali, P., Maussang, K., Beere, H., Ritchie, D., Mangeney, J., Dhillon, S., Tignon, J.: Direct intensity sampling of a modelocked terahertz quantum cascade laser. Appl. Phys. Lett. 101, 181115 (2012)

    Article  ADS  Google Scholar 

  • Gmachl, C., Capasso, F., Sivco, D.L., Cho, A.Y.: Recent progress in quantum cascade lasers and applications. Rep. Prog. Phys. 64, 1533–1601 (2001)

    Article  ADS  Google Scholar 

  • Hartmann, R.R., Kono, J., Portnoi, M.E.: Terahertz science and technology of carbon nanomaterials. Nanotechnology. 25, 322001 (2014)

    Article  Google Scholar 

  • Jishi, R.A., Dresselhaus, M.S., Dresselhaus, G.: Electron-phonon coupling and the electrical conductivity of fullerene nanotubules. Phys. Rev. B. 48(15), 11385–11389 (1993)

    Article  ADS  Google Scholar 

  • Kazarinov, R.F., Suris, R.A.: Possibility of amplification of electromagnetic waves in a semiconductor with a superlattice. Fiz. Tekh. Poluprov. 5, 797–800 (1971)

    Google Scholar 

  • Kibis, O.V.: Features of electron-phonon interaction in nanotubes with chiral symmetry placed in a magnetic field. Phys. Solid State 43, 2336–2343 (2001)

    Article  ADS  Google Scholar 

  • Kibis, O.V., Rosenau da Costa, M., Portnoi, M.E.: Generation of Terahertz Radiation by Hot Electrons in Carbon Nanotubes. Nano Lett. 7, 3414–3417 (2007)

    Article  ADS  Google Scholar 

  • Landauer, R.: Electrical resistance of disordered one-dimensional lattices. Phil. Mag. 21, 863–867 (1972)

    Article  ADS  Google Scholar 

  • Nahata, A., Weling, A.S., Heinz, T.F.: A wideband coherent terahertz spectroscopy system using optical rectification and electro‐optic sampling. Appl. Phys. Lett. 69, 2321–2323 (1996)

    Article  ADS  Google Scholar 

  • Pantell, R.H., Puthoff, H.E.: Fundamentals of Quantum Electronics. Wiley, New York (1972). (Mir, Moscow, 1972)

    Google Scholar 

  • Ramian, G.: The new UCSB free-electron lasers. Nucl. Instrum. Methods Phys. Res. 318, 225–229 (1992)

    Article  ADS  Google Scholar 

  • Ryzhii, V., Ryzhii, M., Otsuji, T.: Negative dynamic conductivity of graphene with optical pumping. J. Appl. Phys. 101, 083114 (2007)

    Article  ADS  Google Scholar 

  • Sadykov, N.R.: Wave functions and eigenvalues of charge carriers in a nanotube in a neighborhood of the dirac point in the presence of a longitudinal electric field. Theor. Math. Phys. 180(3), 1073–1085 (2014). doi:10.4213/tmf8642

    Article  MathSciNet  MATH  Google Scholar 

  • Sadykov, N.R., Skorkin, N.A.: Quantum Approach to the Description of Amplification of Radiation From an Array of Nanotubes. Tech. Phys. 58, 625–629 (2013). doi:10.1134/S1063784213050186

    Article  Google Scholar 

  • Slepyan, G.Y., Maksimenko, S.A., Lakhtakia, A., Yevtushenko, O.M., Gusakov, A.V.: Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation. Phys. Rev. B 60(24), 17136–17149 (1999)

    Article  ADS  Google Scholar 

  • Tans, S.J., Devoret, M.H., Dai, H., Thess, A., Smalley, R.E., Geerligs, L.J., Dekker, C.: Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474–477 (1997)

    Article  ADS  Google Scholar 

  • Teo, K.B.K., Minoux, E., Hudanski, L., Peauger, F., Schnell, J.-P.H., Gangloff, L., Legagneux, P., Dieumegard, D., Amaratunga, G.A.J., Milne, W.I.: Microwave devices: Carbon nanotubes as cold cathodes. Nature 437, 968(2005)

    Article  ADS  Google Scholar 

  • Vul, A., Reich, K., Eidelman, E., Terranova, M.L., Ciorba, A., Orlanducci, S., Sessa, V., Rossi, M.A.: A Model of Field Emission from Carbon Nanotubes Decorated by Nanodiamonds. Adv. Sci. Lett. 3, 110–116 (2010)

    Article  Google Scholar 

  • Wojcik, A.K., Malara, P., Blanchard, R., Mansuripur, T.S., Capasso, F., Belyanin, A.: Generation of picosecond pulses and frequency combs in actively mode locked external ring cavity quantum cascade lasers. Appl. Phys. Lett. 103, 231102 (2013)

    Article  ADS  Google Scholar 

  • Xu, B., Hu, Q., Melloch, M.R.: Electrically pumped tunable terahertz emitter based on intersubband transition. Appl. Phys. Lett. 71, 440–442 (1997)

    Article  ADS  Google Scholar 

  • Zhang, D., Yang, B.H., Yang, R.Q., Lin, C.-H., Murry, S.J., Pei, S.S.: Mid-infrared interband cascade lasers with quantum efficiencies >200%. Appl. Phys. Lett. 72(18), 2220–2222 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Sadykov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadykov, N.R., Aporoski, A.V. & Peshkov, D.A. Terahertz radiation generation process in the medium based on the array of the noninteracting nanotubes. Opt Quant Electron 48, 358 (2016). https://doi.org/10.1007/s11082-016-0625-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0625-8

Keywords

Navigation