Combined terahertz imaging system for enhanced imaging quality

  • Irina N. Dolganova
  • Kirill I. Zaytsev
  • Anna A. Metelkina
  • Egor V. Yakovlev
  • Valeriy E. Karasik
  • Stanislav O. Yurchenko
Article
Part of the following topical collections:
  1. Laser Technologies and Laser Applications

Abstract

An improved terahertz (THz) imaging system is proposed for enhancing image quality. Imaging scheme includes THz source and detection system operated in active mode as well as in passive one. In order to homogeneously illuminate the object plane the THz reshaper is proposed. The form and internal structure of the reshaper were studied by the numerical simulation. Using different test-objects we compare imaging quality in active and passive THz imaging modes. Imaging contrast and modulation transfer functions in active and passive imaging modes show drawbacks of them in high and low spatial frequencies, respectively. The experimental results confirm the benefit of combining both imaging modes into hybrid one. The proposed algorithm of making hybrid THz image is an effective approach of retrieving maximum information about the remote object.

Keywords

Terahertz technology Imaging system Continuous-wave imaging Remote imaging 

Notes

Acknowledgments

This work is supported by the Russian Scientific Foundation, Project \(\#\) 14-19-01083.

References

  1. Abraham, E., Younus, A., Delagnes, J.C., Mounaix, P.: Non-invasive investigation of art paintings by terahertz imaging. Appl. Phys. A 100(3), 585–590 (2010)ADSCrossRefGoogle Scholar
  2. Appleby, R., Wallace, H.B.: Standoff detection of weapons and contraband in the 100 GHz to 1 THz region. IEEE Trans. Antennas Propag. 55(11), 2944–2956 (2007)ADSCrossRefGoogle Scholar
  3. Balakin, A., Kolesnikov, A., Solyankin, P., Angeluts, A., Nazarov, M., Evdokimov, M., Spencer, M., Nikitin, A., Shkurinov, A., Tuchin, V., Yaroslavsky, A.: In 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), p. 1 (2014)Google Scholar
  4. Dolganova, I.N., Neganova, A.S., Karasik, V.E., Zaytsev, K.I., Yurchenko, S.O.: Scattering in structured two-layered medium. J. Phys. Conf. Ser. 584(1), 1–5 (2015a) Google Scholar
  5. Dolganova, I.N., Yurchenko, S.O., Karasik, V.E., Budak, V.P.: Peculiarity of terahertz waves scattering. Int. J. High Speed Electron. Syst. 24, 1–6 (2015b)CrossRefGoogle Scholar
  6. Dolganova, I.N., Zaytsev, K.I., Metelkina, A.A., Karasik, V.E., Yurchenko, S.O.: A hybrid continuous-wave terahertz imaging system. Rev. Sci. Instrum. 86(11), 1–5 (2015c)CrossRefGoogle Scholar
  7. Fromenteze, T., Yurduseven, O., Imani, M.F., Gollub, J., Decroze, C., Carsenat, D., Smith, D.R.: Computational imaging using a mode-mixing cavity at microwave frequencies. Appl. Phys. Lett. 106(19), 1–5 (2015)CrossRefGoogle Scholar
  8. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall, Englewood Cliffs (2007)Google Scholar
  9. Grossman, E., Dietlein, C., Ala-Laurinaho, J., Leivo, M., Gronberg, L., Gronholm, M., Lappalainen, P., Rautiainen, A., Tamminen, A., Luukanen, A.: Passive terahertz camera for standoff security screening. Appl. Opt. 49(19), E106–E120 (2010)ADSCrossRefGoogle Scholar
  10. Heimbeck, M.S., Ng, W.R., Golish, D.R., Gehm, M.E., Everitt, H.O.: Terahertz digital holographic imaging of voids within visibly opaque dielectrics. IEEE Trans. Terahertz Sci. Technol. 5(1), 110–116 (2015)Google Scholar
  11. Huang, S., Ashworth, P.C., Kan, K.W., Chen, Y., Wallace, V.P., Zhang, Y.T., Pickwell-MacPherson, E.: Improved sample characterization in terahertz reflection imaging and spectroscopy. Opt. Express 17(5), 3848–3854 (2009)ADSCrossRefGoogle Scholar
  12. Jacobs, E.L., Furxhi, O.: Target identification and navigation performance modeling of a passive millimeter wave imager. Appl. Opt. 49(19), E94–E105 (2010)ADSCrossRefGoogle Scholar
  13. Karasik, B.S., McGrath, W.R., LeDuc, H.G., Gershenson, M.E.: A hot-electron direct detector for radioastronomy. Supercond. Sci. Technol. 12(11), 745–747 (1999)ADSCrossRefGoogle Scholar
  14. Karpowicz, N., Zhong, H., Zhang, C., Lin, K.I., Hwang, J.S., Xu, J., Zhang, X.C.: Compact continuous-wave subterahertz system for inspection applications. Appl. Phys. Lett. 86(5), 1–3 (2005)CrossRefGoogle Scholar
  15. Kemp, M.C., Glauser, A., Baker, C.: Recent developments in people screening using terahertz technology—seeing the world through terahertz eyes. In: Proceedings of the SPIE, vol. 6212, p. 62120T (2006)Google Scholar
  16. Kim, S.M., Hatami, F., Harris, J.S., Kurian, A.W., Ford, J., King, D., Scalari, G., Giovannini, M., Hoyler, N., Faist, J., Harris, G.: Biomedical terahertz imaging with a quantum cascade laser. Appl. Phys. Lett. 88(15), 1–3 (2006)CrossRefGoogle Scholar
  17. Kim, G.J., Jeon, S.G., Kim, J.I., Jin, Y.S.: High speed scanning of terahertz pulse by a rotary optical delay line. Rev. Sci. Instrum. 79, 1–3 (2008)Google Scholar
  18. Lee, Y.S.: Principles of Terahertz Science and Technology. Springer, New York (2009)Google Scholar
  19. Lee, A.W.M., Qin, Q., Kumar, S., Williams, B.S., Hu, Q., Reno, J.L.: Real-time terahertz imaging over a standoff distance (25 meters). Appl. Phys. Lett. 89(14), 1–3 (2006)Google Scholar
  20. Loffler, T., May, T., am Weg, C., Alcin, A., Hils, B., Roskos, H.G.: Continuous-wave terahertz imaging with a hybrid system. Appl. Phys. Lett. 90(9), 1–3 (2007)CrossRefGoogle Scholar
  21. Lu, M., Shen, J., Li, N., Zhang, Y., Zhang, C., Liang, L., Xu, X.: Detection and identification of illicit drugs using terahertz imaging. J. Appl. Phys. 100(10), 1–5 (2006)CrossRefGoogle Scholar
  22. McClatchey, K., Reiten, M.T., Cheville, R.A.: Time resolved synthetic aperture terahertz impulse imaging. Appl. Phys. Lett. 79(27), 4485–4487 (2001)ADSCrossRefGoogle Scholar
  23. Meledin, D.V., Marrone, D.P., Tong, C.Y.E., Gibson, H., Blundell, R., Paine, S.N., Papa, D.C., Smith, M., Hunter, T.R., Battat, J., Voronov, B., Gol’tsman, G.: A 1-THz superconducting hot-electron-bolometer receiver for astronomical observations. IEEE Trans. Microw. Theory Tech. 52(10), 2338–2343 (2004)ADSCrossRefGoogle Scholar
  24. Mohan, N., Minaeva, O., Goltsman, G.N., Saleh, M.F., Nasr, M.B., Sergienko, A.V., Saleh, B.E., Teich, M.C.: Ultrabroadband coherence-domain imaging using parametric downconversion and superconducting single-photon detectors at 1064 nm. Appl. Opt. 48(20), 4009–4017 (2009)ADSCrossRefGoogle Scholar
  25. Murrill, S.R., Jacobs, E.L., Moyer, S.K., Halford, C.E., Griffin, S.T., De Lucia, F.C., Petkie, D.T., Franck, C.C.: Terahertz imaging system performance model for concealed-weapon identification. Appl. Opt. 47(9), 1286–1297 (2008)ADSCrossRefGoogle Scholar
  26. Nakajima, S., Hoshina, H., Yamashita, M., Otani, C., Miyoshi, N.: Terahertz imaging diagnostics of cancer tissues with a chemometrics technique. Appl. Phys. Lett. 90(4), 1–3 (2007)CrossRefGoogle Scholar
  27. Perov, A.N., Zaytsev, K.I., Fokina, I.N., Karasik, V.E., Yakovlev, E.V., Yurchenko, S.O.: BWO based THz imaging system. J. Phys. Conf. Ser. 486(1), 1–5 (2014)Google Scholar
  28. Petkie, D.T., Casto, C., De Lucia, F.C., Murrill, S.R., Redman, B., Espinola, R.L., Franck, C.C., Jacobs, E.L., Griffin, S.T., Halford, C.E., Reynolds, J., O’Brien, S., Tofsted, D.: Active and passive imaging in the thz spectral region: phenomenology, dynamic range, modes, and illumination. J. Opt. Soc. Am. B 25(9), 1523–1531 (2008)ADSCrossRefGoogle Scholar
  29. Pickwell, E., Wallace, V.P.: Biomedical applications of terahertz technology. J. Phys. D Appl. Phys. 39(17), R301–R310 (2006)ADSCrossRefGoogle Scholar
  30. Pronin, A.V., Goncharov, Y.G., Fischer, T., Wosnitza, J.: Phase-sensitive terahertz spectroscopy with backward-wave oscillators in reflection mode. Rev. Sci. Instrum. 80, 1–5 (2009)CrossRefGoogle Scholar
  31. Scheller, M.: Real-time terahertz material characterization by numerical three-dimensional optimization. Opt. Express 19(11), 10647–10655 (2011)ADSCrossRefGoogle Scholar
  32. Stoik, C.D., Bohn, M.J., Blackshire, J.L.: Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy. Opt. Express 16(21), 17039–17051 (2008)ADSCrossRefGoogle Scholar
  33. Wang, Y., Zhao, W., Chen, Z., Kang, K., Feng, B., Feng, B., Zhang, Y.: Terahertz absorbance spectrum fitting method for quantitative detection of concealed contraband. J. Appl. Phys. 102(11), 1–6 (2007)CrossRefGoogle Scholar
  34. Watanabe, Y., Kawase, K., Ikari, T., Ito, H., Ishikawa, Y., Minamide, H.: Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging. Appl. Phys. Lett. 83(4), 800–802 (2003)ADSCrossRefGoogle Scholar
  35. Watanabe, S., Shimano, R.: Compact terahertz time domain spectroscopy system with diffraction-limited spatial resolution. Rev. Sci. Instrum. 78, 1–6 (2007)Google Scholar
  36. Wei, J., Olaya, D., Karasik, B.S., Pereverzev, S.V., Sergeev, A.V., Gershenson, M.E.: Ultrasensitive hot-electron nanobolometers for terahertz astrophysics. Nat. Nanotechnol. 3, 496–500 (2008)ADSCrossRefGoogle Scholar
  37. Zeitler, J.A., Taday, P.F., Newnham, D.A., Pepper, M., Gordon, K.C., Rades, T.: Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting—a review. J. Pharm. Pharmacol. 59(2), 209–223 (2007)CrossRefGoogle Scholar
  38. Zhang, L., Zhong, H., Deng, C., Zhang, C., Zhao, Y.: Terahertz wave reference-free phase imaging for identification of explosives. Appl. Phys. Lett. 92(9), 1–3 (2008)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Irina N. Dolganova
    • 1
  • Kirill I. Zaytsev
    • 1
  • Anna A. Metelkina
    • 1
  • Egor V. Yakovlev
    • 1
  • Valeriy E. Karasik
    • 1
  • Stanislav O. Yurchenko
    • 1
  1. 1.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations