Skip to main content
Log in

Optical properties of ZnO-based step quantum wells

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The MgxZn1−xO/ZnO and MgxZn1−xO/CdyZn1−yO step quantum well structures have been produced by the pulsed laser deposition method. It has been established that the increase of the barrier height ratio for charge carriers in the conduction and valence bands upon transition from the active ZnO layers in the MgxZn1−xO/ZnO system to the active layers of CdyZn1−yO in a low-dimensional MgxZn1−xO/CdyZn1−yO system is associated with the fact that the electron concentration in CdyZn1−yO films rises with an increase in the cadmium content. As the result, the Fermi level is displaced to the bottom of the conduction band. In the range of quantum well widths from 1 to 12 nm the nonmonotonous growth of exciton and defect-related intensities in photoluminescence spectra is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bowen, W.E., Wang, W., Cagin, E., Phillips, J.D.: Quantum confinement and carrier localization effects in ZnO/Mgx Zn1−x O wells synthesized by pulsed laser deposition. J. Electron. Mater. 37, 749–754 (2008)

    Article  ADS  Google Scholar 

  • Coli, G., Bajaj, K.K.: Excitonic transitions in ZnO/MgZnO quantum well heterostructures. Appl. Phys. Lett. 78, 2861–2863 (2001)

    Article  ADS  Google Scholar 

  • Dai, J., Xu, C.X., Shi, Z.L., Ding, R., Guo, J.Y., Li, Z.H., Gu, B.X., Wua, P.: Three-photon absorption induced whispering gallery mode lasing in ZnO twin-rods microstructure. Opt. Mater. 33, 288–291 (2011)

    Article  ADS  Google Scholar 

  • Kittel, C.: Introduction to Solid State Physics. Wiley, London (2005)

    MATH  Google Scholar 

  • Klingshirn, C.: ZnO: material, physics and applications. Chem. Phys. Chem. 8, 782–803 (2007)

    Google Scholar 

  • Lautenschlager, P., Garriga, M., Logothetidis, S., Cardona, M.: Interband critical points of GaAs and their temperature dependence. Phys. Rev. B 35, 9174–9190 (1987)

    Article  ADS  Google Scholar 

  • Lotin, A.A., Novodvorsky, O.A., Zuev, D.A.: Patent no RU 135638/2013. 20. Dec., registered data: RU 2013120679/2013. 06. May

  • Lotin, A.A., Novodvorsky, O.A.: Dimensional effects in exciton and defect-related luminescence of ZnO-based step quantum wells. Laser Phys. Lett. 12, 095901 (2015)

    Article  ADS  Google Scholar 

  • Lotin, A.A., Novodvorsky, O.A., Parshina, L.S., Khaydukov, E.V., Zuev, D.A., Khramova, O.D., Panchenko, V.Y.: Two-dimensional heterostructures based on ZnO. Appl. Phys. B 105, 565–572 (2011a)

    Article  ADS  Google Scholar 

  • Lotin, A.A., Novodvorsky, O.A., Panchenko, V.Y., Parshina, L.S., Khaydukov, E.V., Zuev, D.A., Rocheva, V.V., Khramova, O.D., Shcherbachev, K.D.: Ternary alloys CdyZn1−yO and MgxZn1−xO—materials for optoelectronics. Phys. Sol. State 53, 467–471 (2011b)

    Article  ADS  Google Scholar 

  • Lotin, A.A., Novodvorsky, O.A., Zuev, D.A.: Room temperature stimulated emission in two-dimensional MgxZn1−xO/ZnO heterostructures at optical pumping. Laser Phys. Lett. 10, 055902 (2013a)

    Article  ADS  Google Scholar 

  • Lotin, A.A., Novodvorsky, O.A., Khramova, O.D., Parshina, L.S., Zuev, D.A., Lebedev, F.V., Bartha, J.W., Wenzel, C.: Influence of growth temperature on physical properties of ZnO films produced by pulsed laser deposition method. Opt. Mater. 35, 1564–1570 (2013b)

    Article  ADS  Google Scholar 

  • Makino, T., Chia, C.H., Segawa, Y., Kawasaki, M., Ohtomo, A., Tamura, K., Koinuma, H.: Radiative and nonradiative recombination processes in lattice-matched (Cd, Zn)O/(Mg, Zn)O multiquantum wells. Appl. Phys. Lett. 77, 1632–1634 (2000)

    Article  ADS  Google Scholar 

  • Nakamura, S., Chichibu, S.F.: Introduction to nitride semiconductor blue lasers and light emitting diodes. Washington D.C, New York (2000)

    Google Scholar 

  • Ohtomo, A., Tsukazaki, A.: Pulsed laser deposition of thin films and superlattices based on ZnO. Semicond. Sci. Technol. 20, S1–S12 (2005)

    Article  ADS  Google Scholar 

  • Sadofev, S., Blumstengel, S., Cuil, J., Puls, J., Rogaschewski, S., Schäfer, P., Henneberger, F.: Visible band-gap ZnCdO heterostructures grown by molecular beam epitaxy. Appl. Phys. Lett. 89, 201907 (2006)

    Article  ADS  Google Scholar 

  • Schleife, A., Rödl, C., Furthmüller, J., Bechstedt, F.: Electronic and optical properties of Mgx Zn1−x O and Cdx Zn1−x O from ab initio calculations. New J. Phys. 13, 085012 (2011)

    Article  ADS  Google Scholar 

  • Su, S.C., Zhu, H., Zhang, L.X., He, M., Zhao, L.Z., Yu, S.F., Wang, J.N., Ling, F.C.C.: Low-threshold lasing action in an asymmetric double ZnO/ZnMgO quantum well structure. Appl. Phys. Lett. 103, 131104 (2013)

    Article  ADS  Google Scholar 

  • Takahashi, K., Yoshikawa, A., Sandhu, A.: Wide Bandgap Semiconductors. Fundamental Properties and Modern Photonic and Electronic Devices. Springer, New York (2007)

    Google Scholar 

  • Tang, Z.K., Kawasaki, M., Ohtomo, A., Koinuma, H., Segawa, Y.: Self-assembled ZnO nano-crystals and exciton lasing at room temperature. J. Cryst. Growth 287, 169–179 (2006)

    Article  ADS  Google Scholar 

  • Teke, A., Ozgur, U., Doğan, S., Gu, X., Morkoc, H., Nemeth, B., Nause, J., Everitt, H.O.: Excitonic fine structure and recombination dynamics in single-crystalline ZnO. Phys. Rev. B 70, 195207 (2004)

    Article  ADS  Google Scholar 

  • Thomas, D.G.: The exciton spectrum of zinc oxide. J. Phys. Chem. Solids 15, 86–96 (1960)

    Article  ADS  Google Scholar 

  • Wu, Y.-H., Arai, K., Yao, T.: Temperature dependence of the photoluminescence of ZnSe/ZnS quantum-dot structures. Phys. Rev. B 53, R10485–R10488 (1996)

    Article  ADS  Google Scholar 

  • Yin, W.-J., Dai, L., Zhang, L., Yang, R., Li, L., Guo, T., Yan, Y.: Stability, transparency, and conductivity of MgxZn1−xO and CdxZn1−xO: designing optimum transparency conductive oxides. J. Appl. Phys. 115, 023707 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Russian Foundation for Basic Research Project Nos. 15-07-03331, 15-29-01171, 15-38-20369, 15-07-03580, 16-29-05385, 16-07-00842, 16-29-11719.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lotin.

Additional information

This article is part of the Topical Collection on Laser technologies and laser applications.

Guest edited by José Figueiredo, José Rodrigues, Nikolai A. Sobolev, Paulo André and Rui Guerra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotin, A.A., Novodvorsky, O.A., Parshina, L.S. et al. Optical properties of ZnO-based step quantum wells. Opt Quant Electron 48, 318 (2016). https://doi.org/10.1007/s11082-016-0587-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0587-x

Keywords

Navigation