Advertisement

Electro-optical modulation bandwidth analysis for traveling-wave and reflective semiconductor optical amplifiers in transparency operating regime

Design and optimization speed-up by using the analytical approach
  • Angelina R. Totović
  • Vukan G. Levajac
  • Dejan M. Gvozdić
Article
Part of the following topical collections:
  1. Advances in the Science of Light

Abstract

In this paper, we analyze the electro-optical modulation bandwidth of the two semiconductor optical amplifier (SOA) structures, traveling-wave and reflective. The model is based on the dynamic traveling-wave equations for forward and backward propagating photon densities of the signal, and the carrier rate equation. We provide the formulae for \(-\)3 dB bandwidth calculation for the transparency regime, which corresponds to deep saturation, typically used in modulation purposes. The comparison of analytical and numerical models shows a good agreement between the two. Analytical approach ensures a low computational resource occupation and an easy analysis of the parameters influencing the SOA bandwidth.

Keywords

Analytical model Modulation response Optical bandwidth optimization Reflective semiconductor optical amplifier Semiconductor device modeling Traveling-wave semiconductor optical amplifier 

References

  1. Antonelli, C., Mecozzi, A., Hu, Z., Santagiustina, M.: Analytic study of the modulation response of reflective semiconductor optical amplifiers. J. Lightwave Technol. 33(20), 4367–4376 (2015)ADSCrossRefGoogle Scholar
  2. Carapellese, N., Tornatore, M., Pattavina, A.: Energy-efficient baseband unit placement in a fixed/mobile converged WDM aggregation network. IEEE J. Sel. Areas Commun. 32(8), 1542–1551 (2014)CrossRefGoogle Scholar
  3. Connelly, M.J.: Wideband semiconductor optical amplifier steady-state numerical model. J. Quantum Electron. 37(3), 439–447 (2001)ADSMathSciNetCrossRefGoogle Scholar
  4. Garfias, P., De Andrade, M., Tornatore, M., Buttaboni, A., Sallent, S., Gutiérrez, L.: Energy-saving mechanism in WDM/TDM-PON based on upstream network traffic. Photonics 1(3), 235–250 (2014)CrossRefGoogle Scholar
  5. Gebrewold, S.A., Marazzi, L., Parolari, R., Brenot, R., Dúill, S.P.O., Bonjour, R., Hillerkuss, D., Hafner, C., Leuthold, J.: Reflective-SOA fiber cavity laser as directly modulated WDM-PON colorless transmitter. J. Sel. Top. Quantum Electron. 20(5), 503–511 (2014)CrossRefGoogle Scholar
  6. Ji, Y., Zhang, J., Zhao, Y., Li, H., Yang, Q., Ge, C., Xiong, Q., Xue, D., Yu, J., Qiu, S.: All optical switching networks with energy-efficient technologies from components level to network level. IEEE J. Sel. Areas Commun. 32(8), 1600–1614 (2014)CrossRefGoogle Scholar
  7. Lee, W., Park, M.Y., Cho, S.H., Lee, J., Kim, B.W., Jeong, G., Kim, B.W.: Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers. IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005)ADSCrossRefGoogle Scholar
  8. Liljeberg, T., Bowers, J.E.: Velocity mismatch limits in semiconductor lasers and amplifiers. In: Proceedings of the IEEE 10th Annual Meeting Lasers Electro-Optics Society Annual Meeting, vol. 1, pp. 341–342 (1997)Google Scholar
  9. Mecozzi, A., Wiesenfeld, J.M.: The roles of semiconductor optical amplifiers in optical networks. Opt. Photon. News 12(3), 36–42 (2001)ADSCrossRefGoogle Scholar
  10. Mørk, J., Mecozzi, A., Eisenstein, G.: The modulation response of a semiconductor laser amplifier. J. Sel. Top. Quantum Electron. 5(3), 851–860 (1999)CrossRefGoogle Scholar
  11. Payoux, F., Chanclou, P., Moignard, M., Brenot, R.: Gigabit optical access using WDM PON based on spectrum slicing and reflective SOA. In: Proceedings of the 31st ECOC, vol. 3, pp. 455–456 (2005)Google Scholar
  12. Stabile, R., Williams, K.A.: Photonic integrated semiconductor optical amplifier switch circuits. In: Urquhart, Paul (ed.) Advances in Optical Amplifiers. InTech, Rijeka (2011)Google Scholar
  13. Sygletos, S., Tomkos, I., Leuthold, J.: Technological challenges on the road toward transparent networking. J. Opt. Netw. 7(4), 321–350 (2008)CrossRefGoogle Scholar
  14. Totović, A.R., Crnjanski, J.V., Krstić, M.M., Mašanović, M.L., Gvozdić, D.M.: A self-consistent numerical method for calculation of steady-state characteristics of traveling-wave and reflective SOAs. J. Sel. Top. Quantum Electron. 19(5), 1–11 (2013)CrossRefGoogle Scholar
  15. Totović, A.R., Crnjanski, J.V., Krstić, M.M., Gvozdić, D.M.: Numerical study of the small-signal modulation bandwidth of reflective and traveling-wave SOAs. J. Lightwwave Technol. 33(13), 2758–2764 (2015)ADSCrossRefGoogle Scholar
  16. Wong, E., Lee, Ka Lun, Anderson, T.B.: Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks. J. Lightwave Technol. 25(1), 67–74 (2007)ADSCrossRefGoogle Scholar
  17. Yu, J.-H., Kim, N., Kim, B.W.: Remodulation schemes with reflective SOA for colorless DWDM PON. J. Opt. Netw. 6(8), 1041–1054 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Angelina R. Totović
    • 1
  • Vukan G. Levajac
    • 1
  • Dejan M. Gvozdić
    • 1
  1. 1.School of Electrical EngineeringUniversity of BelgradeBelgradeSerbia

Personalised recommendations