Skip to main content
Log in

Laser-induced glass surface structuring by LIBBH technology

Optical and Quantum Electronics Aims and scope Submit manuscript


A technology of microrelief formation on the fused silica glass surface by laser induced black body heating is considered. An ytterbium fiber laser and a pressed graphite as an absorbent of laser radiation are used in this technology. The depth of the formed relief depending on the laser interact parameters has been investigated. It is shown that the depth increase linearly with increasing of laser radiation power, pulse duration and number of pulses. Possible mechanisms microrelief formation on the glass surface is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  • Baglin, J.: Ion beam nanoscale fabrication and lithography—a review. Appl. Surf. Sci. 258(9), 4103–4111 (2012)

    Article  ADS  Google Scholar 

  • Chao, H., Furong, L., Weiping, Z., Jimin, C.: Fabrication of microtransmittance grating using laser induced backside dry etching. J. Laser Appl. 24(1), 012001 (2012). doi:10.2351/1.3656488

    Article  ADS  Google Scholar 

  • Chen, F., Liu, H., Yang, Q., Wang, X., Hou, C., Bian, H., Liang, W., Si, J., Hou, X.: Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method. Opt. Express 18(19), 20334–20343 (2010)

    Article  ADS  Google Scholar 

  • Ding, X., Yasui, Y., Kawaguchi, Y., Niino, H., Yabe, A.: Laser-induced back-side wet etching of fused silica with an aqueous solution containing organic molecules. Appl. Phys. A 75(3), 437–440 (2002)

    Article  ADS  Google Scholar 

  • Djurišić, A., Li, E.: Optical properties of graphite. J. Appl. Phys. 85(10), 7404–7410 (1999)

    Article  ADS  Google Scholar 

  • Endert, H., Pätzel, R., Basting, D.: Excimer laser: a new tool for precision micromachining. Opt. Quant. Electron. 27(12), 1319–1335 (1995)

    Google Scholar 

  • Guo, R., Xiao, S., Zhai, X., Li, J., Xia, A., Huang, W.: Micro lens fabrication by means of femtosecond two photon photopolymerization. Opt. Express 14(2), 810–816 (2006)

    Article  ADS  Google Scholar 

  • Hanada, Y., Sugioka, K., Gomi, Y., Yamaoka, H., Otsuki, O., Miyamoto, I., Midorikawa, K.: Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials. Appl. Phys. A 79(4–6), 1001–1003 (2004)

    ADS  Google Scholar 

  • Hong, M., Sugioka, K., Lu, Y., Midorikawa, K., Chong, T.: Laser microfabrication of transparent hard materials and signal diagnostics. Appl. Surf. Sci. 186(1), 556–561 (2002)

    Article  ADS  Google Scholar 

  • Hong, M., Sugioka, K., Wu, D.J., Wong, L., Lu, Y., Midorikawa, K., Chong, T.C.: Laser-induced-plasma-assisted ablation for glass microfabrication. In: International Symposium on Photonics and Applications, pp. 138–146. International Society for Optics and Photonics (2001)

  • Kasztelanic, R., Kujawa, I., Stȩpień, R., Cimek, J., Haraśny, K., Klimczak, M., Waddie, A.J., Taghizadeh, M.R., Buczyński, R.: Fabrication and characterization of microlenses made of tellurite and heavy metal oxide glass developed with hot embossing technology. Opt. Quant. Electron. 46(4), 541–552 (2014)

    Article  Google Scholar 

  • Kiss, B., Vass, C., Heck, P., Dombi, P., Osvay, K.: Fabrication and analysis of transmission gratings produced by the indirect laser etching technique. J. Phys. D Appl. Phys. 44(41), 415103 (2011)

    Article  Google Scholar 

  • Kopitkovas, G., Lippert, T., David, C., Wokaun, A., Gobrecht, J.: Fabrication of micro-optical elements in quartz by laser induced backside wet etching. Microelectron. Eng. 67–68, 438–444 (2003)

    Article  Google Scholar 

  • Kopitkovas, G., Lippert, T., Murazawa, N., David, C., Wokaun, A., Gobrecht, J., Winfield, R.: Laser processing of micro-optical components in quartz. Appl. Surf. Sci. 254(4), 1073–1078 (2007)

    Article  ADS  Google Scholar 

  • Kostyuk, G., Sergeev, M., Zakoldaev, R., Yakovlev, E.: Fast microstructuring of silica glasses surface by NIR laser radiation. Opt. Lasers Eng. 68, 16–24 (2015)

    Article  Google Scholar 

  • Molotokaitė, E., Gedvilas, M., Račiukaitis, G., Girdauskas, V.: Picosecond laser beam interference ablation of thin metal films on glass substrate. JLMN J. Laser Micro Nanoeng. 5(1), 74–79 (2010)

    Article  Google Scholar 

  • Nieto, D., Delgado, T., Flores-Arias, M.T.: Fabrication of microchannels on soda-lime glass substrates with a Nd:YVO4 laser. Opt. Lasers Eng. 63, 11–18 (2014)

    Article  Google Scholar 

  • Psaltis, D., Quake, S., Yang, C.: Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442(7101), 381–386 (2006)

    Article  ADS  Google Scholar 

  • Sergeev, M., Kostyuk, G., Zakoldaev, R., Yakovlev, E.: Laser induced passivation of porous glass to protect it from chemical degradation and aging. Prot. Metals Phys. Chem. Surf. 3, 427–435 (2015)

    Article  Google Scholar 

  • Smausz, T., Csizmadia, T., Kresz, N., Vass, C., Márton, Z., Hopp, B.: Influence on the laser induced backside dry etching of thickness and material of the absorber, laser spot size and multipulse irradiation. Appl. Surf. Sci. 254(4), 1091–1095 (2007)

    Article  ADS  Google Scholar 

  • Sugioka, K., Obata, K., Hong, M., Wu, D., Wong, L., Lu, Y., Chong, T., Midorikawa, K.: Hybrid laser processing for microfabrication of glass. Appl. Phys. A 77(2), 251–257 (2003)

    ADS  Google Scholar 

  • Veiko, V., Yakovlev, Y.: Physical fundamentals of laser forming of micro-optical components. Opt. Eng. 33(11), 3567–3571 (1994)

    Article  ADS  Google Scholar 

  • Wang, J., Niino, H., Yabe, A.: Micromachining of quartz crystal with excimer lasers by laser-induced backside wet etching. Appl. Phys. A 69(1), S271–S273 (1999a)

    Article  ADS  Google Scholar 

  • Wang, J., Niino, H., Yabe, A.: One-step microfabrication of fused silica by laser ablation of an organic solution. Appl. Phys. A Mater. Sci. Process. 68(1), 111–113 (1999b)

    Article  ADS  Google Scholar 

  • Winfield, R., Bhuian, B., O’Brien, S., Crean, G.: Fabrication of grating structures by simultaneous multi-spot fs laser writing. Appl. Surf. Sci. 253(19), 8086–8090 (2007)

    Article  ADS  Google Scholar 

  • Zakoldaev, R., Sergeev, M., Kostyuk, G., Veiko, V.: Laser-induced black-body heating (LIBBH) as a method for glass surface modification. J. Laser Micro Nanoeng. 10(1), 15–19 (2015)

    Article  Google Scholar 

  • Zimmermann, M., Schmidt, M.: Combination of a micro-lens multi-spot generator with a galvanometer scanner for flexible parallel micromachining of silicon. SPIE Optical Engineering+Applications. International Society for Optics and Photonics. 81300O (2011)

Download references


Authors are very grateful to S.D. Vasilkov for help with MOEs research by profilometry. Experimental studies have been supported by the grant from leading universities of the RF (subsidy 074-U01) and the RSF agreement № 14-12-00351.

Author information

Authors and Affiliations


Corresponding author

Correspondence to R. A. Zakoldaev.

Additional information

This article is part of the Topical Collection on Laser Technologies and Laser Applications.

Guest Edited by José Figueiredo, José Rodrigues, Nikolai A. Sobolev, Paulo André and Rui Guerra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostyuk, G.K., Zakoldaev, R.A., Sergeev, M.M. et al. Laser-induced glass surface structuring by LIBBH technology. Opt Quant Electron 48, 249 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: