Skip to main content
Log in

Noninvasive blood glucose monitoring in the terahertz frequency range

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Human skin optical properties were studied in vivo using terahertz (THz) time-domain spectroscopy. For the attenuated total internal reflection (ATR) the silicon Dowe prism was used. The measurements were carried out on six volunteers with normal blood glucose concentration and in good health. A standard oral glucose tolerance test was also performed. The ATR spectra of palm skin were consecutively measured at 0–90 min after glucose intake. The variations of the ATR spectra of human skin were correlated with the changes in blood glucose level. The amplitude of ATR signal of human palm skin increased and the phase decreased when glucose concentrations in blood rose above the normal level. Our results demonstrate the possibility of a non-invasive real-time measurement of blood glucose concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Angeluts, A.A., Balakin, A.V., Evdokimov, M.G., Esaulkov, M.N., Nazarov, M.M., Ozheredov, I.A., Sapozhnikov, D.A., Solyankin, P.M., Cherkasova, O.P., Shkurinov, A.P.: Characteristic responses of biological and nanoscale systems in the terahertz frequency range. Quantum Electron. 44(7), 614–632 (2014a)

    Article  ADS  Google Scholar 

  • Angeluts, A.A., Gapeyev, A.B., Esaulkov, M.N., Kosareva, O.G., Matyunin, S.N., Nazarov, M.M., Pashovkin, T.N., Solyankin, P.M., Cherkasova, O.P., Shkurinov, A.P.: Study of Terahertz-Radiation-Induced DNA Damage in Human Blood Leukocytes. Quantum Electron. 44(3), 247–251 (2014b)

    Article  ADS  Google Scholar 

  • Bashkatov, A.N., Genina, E.A., Kochubey, V.I., Tuchin, V.V.: Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D Appl. Phys. 38, 2543–2555 (2005)

    Article  ADS  Google Scholar 

  • Bennett, D.B., Li, W., Taylor, Z.D., Grundfest, W.S., Brown, E.R.: Stratified media model for terahertz reflectometry of the skin. IEEE Sens. J. 11(5), 1253–1262 (2011). doi:10.1109/JSEN.2010.2088387

    Article  Google Scholar 

  • Burmeister, J.J., Arnold, M.A., Small, G.W.: Noninvasive blood glucose measurements by near-infrared transmission spectroscopy across human tongues. Diabetes Technol. Ther. 2(1), 5–16 (2000)

    Article  Google Scholar 

  • Caduff, A., Talary, M.S., Mueller, M., Dewarrat, F., Klisic, J., Donath, M., Heinemann, L., Stahel, W.A.: Non-invasive glucose monitoring in patients with Type 1 diabetes: a Multisensor system combining sensors for dielectric and optical characterisation of skin. Biosens. Bioelectron. 24(9), 2778–2784 (2009). doi:10.1016/j.bios.2009.02.001

    Article  Google Scholar 

  • Cameron, B.D., Anumula, H.: Development of a real-time corneal birefringence compensated glucose sensing polarimeter. Diabetes Technol. Ther. 8(2), 156–164 (2006)

    Article  Google Scholar 

  • Caspers, P.J., Lucassen, G.W., Puppels, G.J.: Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin. Biophys. J. 85, 572–580 (2003)

    Article  ADS  Google Scholar 

  • Cherkasova, O.P., Nazarov, M.M., Smirnova, I.N., Angeluts, A.A., Shkurinov, A.P.: Application of time-domain THz spectroscopy for studying blood plasma of rats with experimental diabetes. Phys. Wave Phenom. 22(3), 185–188 (2014)

    Article  ADS  Google Scholar 

  • Cherkasova, O.P., Nazarov, M.M., Angeluts, A.A., Shkurinov, A.P.: The investigation of blood plasma in the terahertz frequency range. Opt. Spectrosc. 120(1), 55–63 (2016)

    Article  ADS  Google Scholar 

  • Cherkasova, O.P., Nazarov, M.M., Shkurinov, A.P., Fedorov, V.I.: Terahertz spectroscopy of biological molecules. Radiophys. Quantum Electron. 52(7), 518–523 (2009)

    Article  ADS  Google Scholar 

  • Cherkasova, O.P., Nazarov, M. M., Shkurinov, A.P.: The investigation of blood and skin THz response at high glucose concentration. In: IEEE 40th international conference on infrared, millimeter, and terahertz waves (IRMMW-THz 2015): proceedings, F1E4 (2015)

  • Clarke, S.F., Foster, J.R.: A history of blood glucose meters and their role in self-monitoring of diabetes mellitus. Br. J. Biomed. Sci. 69(2), 83–93 (2012)

    Google Scholar 

  • Echchgadda, I., Grundt, J.A., Tarango, M., Ibey, B.L., Tongue, T., Liang, M., Xin, H., Wilmink, G.J.: Using a portable terahertz spectrometer to measure the optical properties of in vivo human skin. J. Biomed. Opt. 18(12), 120503 (2013)

    Article  ADS  Google Scholar 

  • Feldman, Yu., Puzenko, A., Ishai, P.B., Caduff, A., Davidovich, I., Sakran, F., Agranat, A.J.: The electromagnetic response of human skin in the millimetre and submillimetre wave range. Phys. Med. Biol. 54, 3341–3363 (2009)

    Article  Google Scholar 

  • Fitzgerald, A.J., Pickwell-MacPherson, E., Wallace, V.P.: Use of finite difference time domain simulations and Debye Theory for modelling the Terahertz reflection response of normal and tumour breast tissue. PLoS One 9(7), e99291 (2014). doi:10.1371/journal.pone.0099291

    Article  ADS  Google Scholar 

  • Fowler, M.J.: Microvascular and macrovascular complications of diabetes. Clin. Diabetes 26(2), 77–82 (2008)

    Article  Google Scholar 

  • Fuchs, K., Kaatze, U.J.: Molecular dynamics of carbohydrate aqueous solutions. Dielectric relaxation as a function of glucose and fructose concentration. Phys. Chem. B. 105(10), 2036–2042 (2001)

    Article  Google Scholar 

  • Genina, E.A., Bashkatov, A.N., Sinichkin, YuP, Tuchin, V.V.: Optical clearing of skin under action of glycerol: ex vivo and in vivo investigations. Opt. Spectrosc. 109(2), 225–231 (2010)

    Article  ADS  Google Scholar 

  • Genina, E.A., Bashkatov, A.N., Sinichkin, YuP, Yanina, IYu., Tuchin, V.V.: Optical clearing of biological tissues: prospects of application in medical diagnostics and phototherapy. J. Biomed. Photon. Eng. 1(1), 22–58 (2015)

    Article  Google Scholar 

  • He, R., Wei, H., Gu, H., Zhu, Z., Zhang, Y., Guo, X., Cai, T.: Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomography: a pilot study. J. Biomed. Opt. 17(10), 101513 (2012)

    Article  ADS  Google Scholar 

  • Heh, D.Y., Tan, E.L.: Modeling the interaction of terahertz pulse with healthy skin and basal cell carcinoma using the unconditionally stable fundamental ADI-FDTD method. Prog. Electromagn. Res. B 37, 365–386 (2012)

    Article  Google Scholar 

  • Kolesnikov, A.S., Kolesnikova, E.A., Popov, A.P., Nazarov, M.M., Shkurinov, A.P., Tuchin, V.V.: In vitro terahertz monitoring of muscle tissue dehydration under the action of hyperosmotic agents. Quantum Electron. 44(7), 633–640 (2014)

    Article  ADS  Google Scholar 

  • Lambert, J.L., Pelletier, C.C., Borchert, M.: Glucose determination in human aqueous humor with Raman spectroscopy. J. Biomed. Opt. 10(3), 031110 (2005)

    Article  ADS  Google Scholar 

  • Markelz, A.G.: Terahertz dielectric sensitivity to biomolecular structure and function. IEEE J. Sel. Top. Quantum Electron. 14(1), 180–190 (2008)

    Article  Google Scholar 

  • Nazarov, M.M., Shkurinov, A.P., Kuleshov, E.A., Tuchin, V.V.: Terahertz time-domain spectroscopy of biological tissues. Quantum Electron. 38, 647–654 (2008)

    Article  ADS  Google Scholar 

  • Nazarov, M., Shkurinov, A., Tuchin, V.V., Zhang, X.-C.: Terahertz tissue spectroscopy and imaging. In: Tuchin, V.V. (ed.) Handbook of Photonics for Biomedical Science, pp. 591–617, CRC Press, USA (2010)

    Google Scholar 

  • Newnham, D.A., Taday, P.F.: Pulsed terahertz attenuated total reflection spectroscopy. Appl. Spectrosc. 62(4), 394–398 (2008)

    Article  ADS  Google Scholar 

  • Ney, M., Abdulhalim, I.: Modeling of reflectometric and ellipsometric spectra from the skin in the terahertz and submillimeter waves region. J. Biomed. Opt. 16(6), 067006 (2011)

    Article  ADS  Google Scholar 

  • Oh, S.J., Kim, S.-H., Jeong, K., Park, Y., Huh, Y.-M., Son, J.-H., Suh, J.-S.: Measurement depth enhancement in terahertz imaging of biological tissues. Opt. Express 21(18), 21299–21305 (2013)

    Article  ADS  Google Scholar 

  • Parrott, E.P.J., Sun, Y., Pickwell-MacPherson, E.: Terahertz spectroscopy: its future role in medical diagnoses. J. Mol. Struct. 1006, 66–76 (2011)

    Article  ADS  Google Scholar 

  • Penkov, N., Shvirst, N., Yashin, V., Fesenko Jr, E., Fesenko, E.: Terahertz spectroscopy applied for investigation of water structure. J. Phys. Chem. B 119(39), 12664–12670 (2015)

    Article  Google Scholar 

  • Pickwell, E., Cole, B.E., Fitzgerald, A.J., Pepper, M., Wallace, V.P.: In vivo study of human skin using pulsed terahertz radiation. Phys. Med. Biol. 49, 1595–1607 (2004)

    Article  Google Scholar 

  • Pickwell, E., Wallace, V.P.: Biomedical applications of terahertz technology. J. Phys. D Appl. Phys. 39, R301–R310 (2006)

    Article  ADS  Google Scholar 

  • Raicu, V., Feldman, Y.: Dielectric relaxation in biological systems: Physical principles, methods, and applications. Oxford University Press, Oxford (2015)

    Book  Google Scholar 

  • Rebel, A., Rice, M.A., Fahy, B.G.: The accuracy of point-of-care glucose measurements. J. Diabetes Sci. Technol. 6(2), 396–411 (2012)

    Article  Google Scholar 

  • Ren, Z., Liu, G., Huang, Z.: Determination of glucose concentration based on pulsed laser induced photoacoustic technique and least square fitting algorithm. Proc. SPIE 9619, 96190M (2015). doi:10.1117/12.2190601

    Article  ADS  Google Scholar 

  • Schaefer, H., Redelmeier, T.E.: Skin Barrier, Principles of Percutaneous Absorption. Karger AG, Basel (1996)

    Google Scholar 

  • Shatalova, T.A., Gorobchenko, O.A., Ovsyannikova, T.N., Gladkih, A.I., Nikolov, O.T., Gatash, S.V.: Influence of type 2 diebetes on dielectric characteristics of rat erythrocytes. Biophysical Vestnik. 26(1), 94–103 (2011)

    Google Scholar 

  • Shiraga, K., Ogawa, Y., Kondo, N., Irisawa, A., Imamura, M.: Evaluation of the hydration state of saccharides using terahertz time-domain attenuated total reflection spectroscopy. Food Chem. 140(1–2), 315–320 (2013)

    Article  Google Scholar 

  • Sigel, P.H., Lee, Y., Pikov, V. (2014) Millimeter-Wave Non-Invasive Monitoring of Glucose in Anesthetized Rats. In: IEEE 39th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2014): proceedings, T2/D-8 (2014)

  • Standards of Medical Care in Diabetes—2014. Diabetes Care.37, Suppl. 1, S14–S80 (2014)

  • Summa, N.M., Eshar, D., Lee-Chow, B., Larrat, S., Brown, D.C.: Comparison of a human portable glucometer and an automated chemistry analyzer for measurement of blood glucose concentration in pet ferrets (Mustela putorius furo). Can. Vet. J. 55, 865–869 (2014)

    Google Scholar 

  • Sun, C-K., Tsai, Y-F., Chen, H.: United States Patent Application Publication. US 2013/0289370 A1 (2013) http://www.faqs.org/patents/app/20130289370#ixzz3HQzAOszh

  • Truong, B. C. Q., Tuan, H. D., Kha H.H., Nguyen H.T.: (2012) System identification for Terahertz wave’s propagation and reflection in human skin. In: IEEE, 364–368 (2012). doi:10.1109/CCE.2012.6315929

  • Yada, H., Nagai, M., Tanaka, K.: Origin of the fast relaxation component of water and heavy water revealed by terahertz time-domain attenuated total reflection spectroscopy. Chem. Phys. Lett. 464, 166–170 (2008)

    Article  ADS  Google Scholar 

  • Zanon, M., Giovanni Sparacino, G., Facchinetti, A., Talary, M.S., Mueller, M., Caduff, A., Cobelli, C.: Non-invasive continuous glucose monitoring with multi-sensor systems: a monte carlo-based methodology for assessing calibration robustness. Sensors 13, 7279–7295 (2013). doi:10.3390/s130607279

    Article  Google Scholar 

  • Zaytsev, K.I., Kudrin, K.G., Karasik, V.E., Reshetov, I.V., Yurchenko, S.O.: In vivo terahertz spectroscopy of pigmentary skin nevi: pilot study of non-invasive early diagnosis of dysplasia. Appl. Phys. Lett. 106, 053702 (2015a). doi:10.1063/1.4907350

    Article  ADS  Google Scholar 

  • Zaytsev, K.I., Gavdush, A.A., Chernomyrdin, N.V., Yurchenko, S.O.: Highly Accurate in Vivo Terahertz Spectroscopy of Healthy Skin: variation of Refractive Index and Absorption Coefficient Along the Human Body. IEEE Trans. Terahertz Sci. Technol. 5(5), 817–827 (2015b)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work has been supported by RFBR (grant No. 13-02-01364) and The Tomsk State University Academic D.I. Mendeleev Fund Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Cherkasova.

Additional information

This article is part of the Topical Collection on Laser technologies and laser applications.

Guest Edited by José Figueiredo, José Rodrigues, Nikolai A. Sobolev, Paulo André and Rui Guerra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherkasova, O., Nazarov, M. & Shkurinov, A. Noninvasive blood glucose monitoring in the terahertz frequency range. Opt Quant Electron 48, 217 (2016). https://doi.org/10.1007/s11082-016-0490-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0490-5

Keywords

Navigation