Skip to main content
Log in

Conductive substrate-mediated Fano resonances in aluminum truncated hollow bowtie nanoantenna across the ultraviolet

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Aluminum nanostructures have been considered as promising substitutions for conventional noble metals with the ability to sustain strong hybridized plasmon resonant modes across the ultraviolet (UV) to visible spectrum. Here, we introduce a nanoantenna consisting of a pair of aluminum truncated hollow triangles in a head-to-head orientation, resembling a bowtie antenna. Depositing the antenna on a glass substrate, we show that the proposed nanoantenna can be tailored to support Fano-like resonant mode at the near-UV band via suppression of dipolar broad bright mode by a narrow dark mode. Using a conductive layer in contact below the studied aluminum antenna, we prepared a platform to intensify the energy of hybridized plasmonic modes to induce pronounced Fano resonant mode across the UV spectrum. This remarkable effect occurred because of presence of a conductive layer below the antenna, which caused the narrowing of the bright mode and pushing this mode to higher energies. This finding paves new promising strategies to design efficient UV-based plasmonic devices for several practical purposes from sensing to switching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aćimović, S.S., Kreuze, M.P., González, M.U., Quidant, R.: Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. ACS Nano 3(5), 1231–1237 (2009)

    Article  Google Scholar 

  • Ahmadivand, A., Pala, N.: Multiple Fano resonances in plasmonic metamaterials composed of Al/Al2O3 nanomatryushka structures. MRS Proc. 1788 (2015)

  • Ahmadivand, A., Pala, N.: Localization, hybridization, and coupling of plasmon resonances in an aluminum nanomatryushka. Plasmonics 10(4), 809–817 (2015)

    Article  Google Scholar 

  • Ahmadivand, A., Golmohammadi, S., Karabiyik, M., Pala, N.: Fano resonances in complex plasmonic necklaces composed of gold nanodisks clusters for enhanced LSPR sensing. IEEE Sens. J. 15(3), 1588–1594 (2015a)

    Article  Google Scholar 

  • Ahmadivand, A., Sinha, R., Pala, N.: Hybridized plasmonic resonant modes in molecular metallodielectric quad-triangles nanoantenna. Opt. Commun. 355, 103–108 (2015b)

    Article  ADS  Google Scholar 

  • Ahmadivand, A., Pala, N., Guney, D.O.: Enhancement of photothermal heat generation by metallodielectric nanoplasmonic clusters. Opt. Express 23(11), A682–A691 (2015c)

    Article  ADS  Google Scholar 

  • Anker, J.N., Hall, W.P., Lyandres, O., Shah, N.C., Zhao, J., VanDuyne, R.P.: Biosensing with plasmonic nanosensors. Nat. Mater. 7(6), 442–453 (2008)

    Article  ADS  Google Scholar 

  • Arakawa, E.T., Williams, M.W.: Optical properties of aluminum oxide in the vacuum ultraviolet. J. Phys. Chem. Solids 29(5), 735–744 (1968)

    Article  ADS  Google Scholar 

  • Bao, K., Mirin, N.A., Nordlander, P.: Fano resonances in planar silver nanosphere cluster. Appl. Phys. A 100(2), 333–339 (2010)

    Article  ADS  Google Scholar 

  • Chan, G.H., Zhao, J., Schatz, G.C., Van Duyne, R.P.: Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles. J. Phys. Chem. C 112(36), 13958–13963 (2008)

    Article  Google Scholar 

  • Chen, Y., Yang, T., Pan, H., Yuan, Y., Chen, L., Liu, M., Zhang, K., Zhang, S., Wu, P., Xu, J.: Photoemission mechanism of water-soluble silver nanoclusters: ligand-to-metal-metal charge transfer vs. strong coupling between surface plasmon and emitters. J. Am. Chem. Soc. 136(5), 1686–1689 (2014)

    Article  Google Scholar 

  • Chowdhury, M.H., Ray, K., Gray, S.K., Pond, J., Lakowicz, J.R.: Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules. Anal. Chem. 81(4), 1397–1403 (2009)

    Article  Google Scholar 

  • Chuntonov, L., Haran, G.: Effect of symmetry breaking on the mode structure of trimericplasmonic molecules. J. Phys. Chem. C 115(40), 19488–19495 (2011)

    Article  Google Scholar 

  • Eskelinen, A.P., Moerland, R.J., Kostiainen, M.A., Torma, P.: Self-assembled silver nanoparticles in a bow-tie antenna configuration. Small 10(6), 1057–1062 (2013)

    Article  Google Scholar 

  • Fan, J.A., Wu, C., Bao, K., Bardhan, R., Halas, N.J., Manoharan, V.N., Nordlander, P., Shvets, G., Capasso, F.: Self-assembled plasmonic nanoparticle clusters. Science 328(5982), 1135–1138 (2010)

    Article  ADS  Google Scholar 

  • Fang, P.H., Ephrath, L., Nowak, W.B.: Polycrystalline silicon films on aluminum sheets for solar cell applications. Appl. Phys. Lett. 25(10), 583–584 (1974)

    Article  ADS  Google Scholar 

  • Fischer, H., Martin, O.J.F.: Engineering the optical response of plasmonic nanoantennas. Opt. Express 16(12), 9144–9154 (2008)

    Article  ADS  Google Scholar 

  • Fromm, D.P., Sundaramurthy, A., Schuck, P.J., Kino, G., Moerner, W.E.: Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible. Nano Lett. 4(5), 957–961 (2004)

    Article  ADS  Google Scholar 

  • Funston, A.M., Novo, C., Davis, T.J., Mulvaney, P.: Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett. 9(4), 1651–1658 (2003)

    Article  ADS  Google Scholar 

  • Gallinet, B., Martin, O.J.F.: Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures. ACS Nano 7(8), 6978–6987 (2013)

    Article  Google Scholar 

  • Giannini, V., Francescato, Y., Amrania, H., Phillips, C.C., Maier, S.A.: Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach. Nano Lett. 11(7), 2835–2840 (2011)

    Article  Google Scholar 

  • Hao, F., Sonnefraud, Y., Dorpe, P.V., Maier, S.A., Halas, N.J., Nordlander, P.: Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett. 8(11), 3983–3988 (2008)

    Article  ADS  Google Scholar 

  • Hogan, N.J., Urban, A.S., Orozco, C.A., Pimpinelli, A., Nordlander, P., Halas, N.J.: Nanoparticles heat through light localization. Nano Lett. 14(8), 4640–4645 (2014)

    Article  ADS  Google Scholar 

  • King, N.S., Liu, N.S., Yang, X., Cerjan, B., Everitt, H.O., Nordlander, P., Halas, N.J.: Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing. ACS Nano (2015). doi:10.1021/acsnano.5b04864

    Google Scholar 

  • Kinkhabwala, A., Yu, Z., Fan, S., Avlasevich, Y., Mullen, K., Moerner, W.E.: Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 3(11), 654–657 (2009)

    Article  ADS  Google Scholar 

  • Knight, M.W., Liu, L., Wang, Y., Brown, L., Mukherjee, S., King, N.S., Everitt, H.O., Nordlander, P., Halas, N.J.: Aluminum plasmonic nanoantennas. Nano Lett. 12(11), 6000–6004 (2012)

    Article  ADS  Google Scholar 

  • Knight, M.W., King, N.S., Liu, L., Everit, H.O., Nordlander, P., Halas, N.J.: Aluminum for plasmonics. ACS Nano 8(1), 834–840 (2014)

    Article  Google Scholar 

  • Knight, M.W., Coenen, T., Yang, Y., Brenny, B.J.M., Losurdo, M., Brown, A.S., Everitt, H.O., Polman, A.: Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles. ACS Nano 9(2), 2049–2060 (2015)

    Article  Google Scholar 

  • Langhammer, C., Schwind, M., Kasemo, B., Zoric, I.: Localized surface plasmonic resonances in aluminum nanodisks. Nano Lett. 8(5), 1461–1471 (2008)

    Article  ADS  Google Scholar 

  • Lecarme, O., Sun, Q., Ueno, K., Misawa, H.: Robust and versatile light absorption at near-infrared wavelengths by plasmonic aluminum nanorods. ACS Photonics 1(6), 538–546 (2014)

    Article  Google Scholar 

  • Maier, S.A.: Plasmonics: Fundamentals and applications. Springer, New York (2007)

    Google Scholar 

  • Mirin, N.A., Bao, K., Nordlander, P.: Fano resonances in plasmonic nanoparticle aggregates. J. Phys. Chem. A 113(16), 4028–4034 (2009)

    Article  Google Scholar 

  • Mukherjee, S., Sobhani, H., Lassiter, J.B., Bardhan, R., Nordlander, P., Halas, N.J.: Fanoshells: nanoparticles with built-in Fano resonances. Nano Lett. 10(7), 2694–2701 (2010)

    Article  ADS  Google Scholar 

  • Muskens, O.L., Giannini, V., Sánchez-Gil, J.A., Gomez-Rivas, J.: Optical scattering resonances of single and coupled dimer plasmonic nanoantenna. Opt. Express 15(26), 17736–17746 (2007)

    Article  ADS  Google Scholar 

  • Osa, R.A., Sanz, J.M., Barreda, A.I., Saiz, J.M., Gonzalez, F., Eeritt, H.O., Moreno, F.: Rhodium tripod star for UV plasmonics. J. Phys. Chem. C 119(22), 12572–12580 (2015)

    Article  Google Scholar 

  • Palik, E.D.: Handbook of Optical Constants of Solids. Academic Press, San Diego (1998)

    Google Scholar 

  • Prodan, E., Radloff, C., Halas, N.J., Nordlander, P.: A hybridization model for the plasmon response of complex nanostructures. Science 302(5644), 419–422 (2003)

    Article  ADS  Google Scholar 

  • Semaltianos, N.G.: Thermally evaporated aluminum thin films. Appl. Surf. Sci. 183(4), 223–229 (2001)

    Article  ADS  Google Scholar 

  • Senanayake, P., Hung, C.H., Shapiro, J., Scofield, A., Lin, A., Williams, B.S., Huffaker, D.L.: 3D nanopillar optical antenna photodetectors. Opt. Express 20(23), 25489–25496 (2012)

    Article  ADS  Google Scholar 

  • Sepulveda, B., Angelome, P.C., Lechuga, L.M., Marzan, L.M.L.: LSPR-based biosensors. Nano Today 4(3), 244–251 (2009)

    Article  Google Scholar 

  • Shimazaki, Y., Mitsuishi, M., Ito, A., Yamamoto, M.: Preparation of the layer-by-layer deposited ultrathin film based on charge-transfer interaction. Langmuir 13(6), 1385–1387 (1997)

    Article  Google Scholar 

  • Sobhani, A., Manjavacas, A., Cao, Y., McClain, M.J., Garcia de Abajo, F.J., Nordlander, P., Halas, N.J.: Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film. Nano Lett. 15(10), 6946–6951 (2015)

    Article  ADS  Google Scholar 

  • Sonnefraud, Y., Verellen, N., Sobhani, H., Vandenbosch, G.A.E., Moshchalkov, V.V., Dorpel, P.V., Nordlander, P., Maier, S.A.: Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 4(3), 1664–1670 (2010)

    Article  Google Scholar 

  • Su, K.H., Wei, Q.H., Zhang, X.: Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 3(8), 1087–1090 (2003)

    Article  ADS  Google Scholar 

  • Verellen, N., Sonnefraud, Y., Sobhani, H., Hao, F., Moshchalkov, V.V., Van Dorpe, P., Nordlander, P., Maier, S.A.: Fano resonances in individual coherent plasmonic nanocavities. Nano Lett. 9(4), 1663–1667 (2009)

    Article  ADS  Google Scholar 

  • Wang, Y., Li, Z., Zhao, K., Sobhani, A., Zhu, X., Fang, Z., Halas, N.J.: Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters. Nanoscale 5(20), 9897–9901 (2013)

    Article  ADS  Google Scholar 

  • Willets, K.A., Van Duyne, R.P.: Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007)

    Article  ADS  Google Scholar 

  • Yanchuk, B.L., Zheludev, N.I., Maier, S.A., Halas, N.J., Nordlander, P., Giessen, H., Chong, C.T.: The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9(9), 707–715 (2010)

    Article  ADS  Google Scholar 

  • Yang, Y., Akozbek, N., Kim, T.H., Sanz, J.M., Moreno, F., Losurdo, M., Brown, A.S., Everitt, H.O.: Ultraviolet-visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry. ACS Photonics 1(7), 582–589 (2014)

    Article  Google Scholar 

  • Zhang, S., Bao, K., Halas, N.J., Xu, H., Nordlander, P.: Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett. 11(4), 1657–1663 (2011)

    Article  ADS  Google Scholar 

  • Zheng, B.Y., Wang, Y., Nordlander, P., Halas, N.J.: color-selective and CMOS-compatible photodetection based on aluminum plasmonics. Adv. Mater. 26(36), 6318–6323 (2014)

    Article  Google Scholar 

  • Zhu, S., Liow, T.Y., Lo, G.Q., Kwong, D.L.: Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electron photonic integrated circuits. Appl. Phys. Lett. 98(2), 21107–21107 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Golmohammadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nooshnab, V., Golmohammadi, S. Conductive substrate-mediated Fano resonances in aluminum truncated hollow bowtie nanoantenna across the ultraviolet. Opt Quant Electron 48, 192 (2016). https://doi.org/10.1007/s11082-016-0474-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0474-5

Keywords

Navigation