Skip to main content
Log in

Enhancement piezoelectricity in poly(vinylidene fluoride) by filler piezoceramics lead-free potassium sodium niobate (KNN)

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Polymer–ceramic piezoelectric composites are promising materials for sensor and actuator, because of large piezoelectric response properties. Thin films composites of poly(vinylidene fluoride) (PVDF) and piezoceramics potassium sodium niobate (KNN) have been prepared by cast method on indium–tin-oxide-coated glass substrates. The β-phase in PVDF is responsible for piezoelectric property. KNN with different concentrations was used as filler in composites. Corona poling method is used to the polarized the thin films of PVDF/KNN composites. The morphology of thin films determines using SEM and the crystalline structure investigates by XRD and FTIR techniques. SEM shows the rough surface contained spherulitic structural with less porosity and the size of the spherulitic range between 1 and 3 μm in diameter. XRD demonstrated that the structure of pure PVDF film is mix of α and β-phase and converted to the pure β-phase after filler by KNN. FTIR results confirmed the XRD. The fraction β in PVDF films alter from 77.5 to 80.3 % after poling, and enhance to the 86.0 % by filler of KNN in PVDF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdullah, I.Y., Yahaya, M., Haji Jumali, M.H., Shanshool, H.M.: Effect of annealing process on the phase formation in poly(vinylidene fluoride) thin films. In: AIP Conference Proceedings, vol. 1614, pp. 147–151 (2014). doi:10.1063/1.4895187

  • Abdullah, I.Y., Haji Jumali, M.H., Yahaya, M., Shanshool, H.M.: Facile formation of β poly(vinylidene fluoride) films using the short time annealing process. Adv. Environ. Biol. 9(20), 20–27 (2015)

    Google Scholar 

  • Baker, D.W., Thomas, P.A., Zhang, N., Glazer, A.M.: A comprehensive study of the phase diagram of KxNa1–xNbO3. Appl. Phys. Lett. 95(9), 1903-1–1903-3 (2009). doi:10.1063/1.3212861

    Article  Google Scholar 

  • Benz, M., Euler, W.B., Gregory, O.J.: The influence of preparation conditions on the surface morphology of poly(vinylidene fluoride) films. Langmuir 17(1), 239–243 (2001)

    Article  Google Scholar 

  • Cardoso, V.F., Rocha, J.G., Nunes, J.S., Lanceros-Mendez, S., Minas, G.: Piezoelectric β-PVDF polymer films as fluid acoustic microagitator. In: IEEE International Symposium on Industrial Electronics. ISIE 2008, pp. 2028–2033. IEEE (2008)

  • Chen, S., Yao, K., Tay, F.E.H., Liow, C.L.: Ferroelectric poly(vinylidene fluoride) thin films on Si substrate with the beta phase promoted by hydrated magnesium nitrate. J. Appl. Phys. 102(10), 04108-1–104108-7 (2007)

    ADS  Google Scholar 

  • Dang, Z.M., Zheng, Y., Xu, H.P.: Effect of the ceramic particle size on the microstructure and dielectric properties of barium titanate/polystyrene composites. J. Appl. Polym. Sci. 110(6), 3473–3479 (2008)

    Article  Google Scholar 

  • Gregorio Jr, R., de Souza Nociti, N.C.P.: Effect of PMMA addition on the solution crystallization of the alpha and beta phases of poly(vinylidene fluoride) (PVDF). J. Phys. D Appl. Phys. 28(2), 432–436 (1995)

    Article  ADS  Google Scholar 

  • Huang, F., Wei, Q., Wang, J., Cai, Y., Huang, Y.: Effect of temperature on structure, morphology and crystallinity of PVDF nanofibers via electrospinning. e-Polymers 8(1), 1758–1765 (2008)

    Google Scholar 

  • Hussain, A., Maqbool, A., Kim, J.S., Song, T.K., Kim, M.H., Kim, W.J., Kim, S.S.: Sodium excess Ta-modified (K0.5Na0.5) NbO3 ceramics prepared by reactive template grain growth method. Int. J. Appl. Ceram. Technol. 12(1), 228–234 (2015)

    Article  Google Scholar 

  • Jia, Q., Shen, B., Hao, X., Song, S., Zhai, J.: Anomalous dielectric properties of Ba1–xCaxTiO3 thin films near the solubility limit. Mater. Lett. 63(3), 464–466 (2009)

    Article  Google Scholar 

  • Li, L., Bai, W., Zhang, Y., Shen, B., Zhai, J.: The preparation and piezoelectric property of textured KNN-based ceramics with plate-like NaNbO3 powders as template. J. Alloys Compd. 622, 137–142 (2015)

    Article  Google Scholar 

  • Lusiola, T., Ali, H., Kim, M.H., Graule, T., & Clemens, F.: Ferroelectric KNNT fibers by thermoplastic extrusion process: microstructure and electromechanical characterization. In: Actuators, vol. 4, no. 2, pp. 99–113. Multidisciplinary Digital Publishing Institute (2015)

  • Martins, P., Costa, C.M., Benelmekki, M., Botelho, G., Lanceros-Méndez, S.: Interface characterization and thermal degradation of ferrite/poly(vinylidene fluoride) multiferroic nanocomposites. J. Mater. Sci. 48(6), 2681–2689 (2013)

    Article  ADS  Google Scholar 

  • Newnham, R.E., Skinner, D.P., Cross, L.E.: Connectivity and piezoelectric–pyroelectric composites. Mater. Res. Bull. 13(5), 525–536 (1978)

    Article  Google Scholar 

  • Ostaševičius, V., Milašauskaitė, I., Daukševičius, R., Baltrušaitis, V., Grigaliūnas, V., Prosyčevas, I.: Experimental characterization of material structure of piezoelectric PVDF polymer. Mechanika 6(86), 78–82 (2010)

    Google Scholar 

  • Panda, P.K.: Review: environmental friendly lead-free piezoelectric materials. J. Mater. Sci. 44(19), 5049–5062 (2009)

    Article  ADS  Google Scholar 

  • Qiu, J., Ji, H.: The application of piezoelectric materials in smart structures in China. Int. J. Aeronaut. Space Sci. 11(4), 266–284 (2010)

    MathSciNet  Google Scholar 

  • Ramajo, L., Castro, M.S., Reboredo, M.M.: Effect of silane as coupling agent on the dielectric properties of BaTiO3-epoxy composites. Compos. A Appl. Sci. Manuf. 38(8), 1852–1859 (2007)

    Article  Google Scholar 

  • Sebastian, M.T., Jantunen, H.: Polymer–ceramic composites of 0–3 connectivity for circuits in electronics: a review. Int. J. Appl. Ceram. Technol. 7(4), 415–434 (2010). doi:10.1111/j.1744-7402.2009.02482.x

    Google Scholar 

  • Uchino, K.: Ferroelectric Devices, 2nd edn. CRC Press, London (2009)

    Book  Google Scholar 

  • Venkatragavaraj, E., Satish, B., Vinod, P.R., Vijaya, M.S.: Piezoelectric properties of ferroelectric PZT–polymer composites. J. Phys. D Appl. Phys. 34(4), 487 (2001)

    Article  ADS  Google Scholar 

  • Wu, L., Zhang, J.L., Wang, C.L., Li, J.C.: Influence of compositional ratio K/Na on physical properties in (KxNa1–x) NbO3 ceramics. J. Appl. Phys. 103(8), 84116-1–084116-5 (2008)

    Google Scholar 

  • Zhong, G., Zhang, L., Su, R., Wang, K., Fong, H., Zhu, L.: Understanding polymorphism formation in electrospun fibers of immiscible poly(vinylidene fluoride) blends. Polymer 52(10), 2228–2237 (2011). doi:10.1016/j.polymer.2011.03.024

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibtisam Yahya Abdullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, I.Y., Yahaya, M., Jumali, M.H.H. et al. Enhancement piezoelectricity in poly(vinylidene fluoride) by filler piezoceramics lead-free potassium sodium niobate (KNN). Opt Quant Electron 48, 149 (2016). https://doi.org/10.1007/s11082-016-0433-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0433-1

Keywords

Navigation