Robustness analysis of a device concept for edge-emitting lasers based on strained germanium

Abstract

We consider a device concept for edge-emitting lasers based on strained germanium microstrips. The device features an inhomogeneous tensile strain distribution generated by a SiN stressor deposited on top of the Ge microstrip. This geometry requires a lateral contact scheme and hence a full two-dimensional description. The two-dimensional simulations of the carrier transport and of the optical field, carried out in a cross section of the device orthogonal to the optical cavity, use microscopic calculations of the strained Ge material gain as an input. In this paper we study laser performance and robustness against Shockley–Read–Hall lifetime variations and device sensitivity to different strain distributions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bandelow, U., Gajewski, H., Hünlich, R.: Optoelectronic Devices: Advanced Simulation and Analysis. Springer, Chapter 3: Fabry-Perot lasers: Thermodynamics-based modeling, pp. 63–85 (2005)

  2. Camacho-Aguilera, R.E., Cai, Y., Patel, N., Bessette, J.T., Romagnoli, M., Kimerling, L.C., Michel, J.: An electrically pumped germanium laser. Opt. Express 20(10), 11316–11320 (2012)

    Article  ADS  Google Scholar 

  3. Capellini, G., Reich, C., Guha, S., Yamamoto, Y., Lisker, M., Virgilio, M., Ghrib, A., Kurdi, M.E., Boucaud, P., Tillack, B., Schroeder, T.: Tensile Ge microstructures for lasing fabricated by means of a silicon complementary metal-oxide-semiconductor process. Opt. Express 22(1), 399–410 (2014)

    Article  ADS  Google Scholar 

  4. Gajewski, H., Nürnberg. R., Stephan, H.: WIAS-TeSCA: Two-Dimensional Semi-Conductor Analysis Package (2015). https://www.wias-berlin.de/software/tesca/

  5. Geiger, R., Zabel, T., Sigg, H.: Group IV direct band gap photonics: methods, challenges and opportunities. Front. Mater. 2, 52 (2015)

    Article  Google Scholar 

  6. Klesse, W., Scappucci, G., Capellini, G., Hartmann, J., Simmons, M.: Atomic layer doping of strained ge-on-insulator thin films with high electron densities. Appl. Phys. Lett. 102(15), 103–151 (2013)

    Article  Google Scholar 

  7. Koerner, R., Oehme, M., Gollhofer, M., Schmid, M., Kostecki, K., Bechler, S., Widmann, D., Kasper, E., Schulze, J.: Electrically pumped lasing from Ge Fabry-Perot resonators on Si. Opt. Express 23(11), 14815–14822 (2015)

    Article  ADS  Google Scholar 

  8. Liu, J., Sun, X., Camacho-Aguilera, R., Kimerling, L.C., Michel, J.: Ge-on-Si laser operating at room temperature. Opt. Lett. 35(5), 679–681 (2010)

    Article  ADS  Google Scholar 

  9. Peschka, D., Thomas, M., Glitzky, A., Nürnberg, R., Gärtner, K., Virgilio, M., Guha, S., Schroeder, T., Capellini, G., Koprucki, T.: Modeling of edge-emitting lasers based on tensile strained germanium microstrips. IEEE Photon. J. 7(3), 1502115 (2015)

  10. Sukhdeo, D.S.: Band-Engineered Germanium for CMOS-Compatible Light Emission. PhD thesis, Stanford University (2015)

  11. Virgilio, M., Manganelli, C.L., Grosso, G., Pizzi, G., Capellini, G.: Radiative recombination and optical gain spectra in biaxially strained \(n\)-type germanium. Phys. Rev. B 87, 235313 (2013a)

    Article  ADS  Google Scholar 

  12. Virgilio, M., Manganelli, C.L., Grosso, G., Schroeder, T., Capellini, G.: Photoluminescence, recombination rate, and gain spectra in optically excited n-type and tensile strained germanium layers. J. Appl. Phys. 114(24), 243102 (2013b)

    Article  ADS  Google Scholar 

  13. Wirths, S., Geiger, R., von den Driesch, N., Mussler, G., Stoica, T., Mantl, S., Ikonic, Z., Luysberg, M., Chiussi, S., Hartmann, J. M., Sigg, H., Faist, J., Buca, D., Grützmacher, D.: Lasing in direct-bandgap GeSn alloy grown on Si.  Nature Photon. 9, 88–92 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Einstein Center for Mathematics Berlin under projects MATHEON-OT1 (D.P., M.T.) and MATHEON-SE2 (A.G.) and the Deutsche Forschungsgemeinschaft DFG within CRC 787 “Semiconductor Nanophotonics” (T.K.). The authors are very thankful to Klaus Gärtner for many helpful comments and ongoing inspiring discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Koprucki.

Additional information

This article is part of the Topical Collection on Numerical Simulation of Optoelectronic Devices, NUSOD’15.

Guest edited by Julien Javaloyes, Weida Hu, Slawek Sujecki and Yuh-Renn Wu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peschka, D., Thomas, M., Glitzky, A. et al. Robustness analysis of a device concept for edge-emitting lasers based on strained germanium. Opt Quant Electron 48, 156 (2016). https://doi.org/10.1007/s11082-016-0394-4

Download citation

Keywords

  • Semiconductor lasers
  • Germanium
  • Strain