Skip to main content
Log in

Creation of N-atom GHZ state in atom-cavity-fiber system by multi-state adiabatic passage

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We propose a relatively robust scheme to generate controllable (deterministic) atomic entangled GHZ states in atom-cavity-fiber system by adiabatic passage. In the present scheme, the atoms are individually trapped in N spatially separated optical cavities coupled by optical fibers. Losses due to the cavity decay are efficiently suppressed by employing the adiabatic passage technique and appropriately designed atom-field couplings. We consider N five-level atoms simultaneously interacting with N resonant one-mode cavity to reach the N-atom GHZ state of the present system. The influence of various decoherence processes such as spontaneous emission and photon loss on the fidelity is also investigated. It is found that our schemes can be realized with high fidelity even when these decoherence processes are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amniat-Talab, M., Guérin, S., Sangouard, N., Jauslin, H.R.: Atom–photon, atom–atom, and photon–photon entanglement preparation by fractional adiabatic passage. Phys. Rev. A 71, 023805–023812 (2005a)

    Article  ADS  Google Scholar 

  • Amniat-Talab, M., Guérin, S., Jauslin, H.R.: Decoherence-free creation of atom-atom entanglement in a cavity via fractional adiabatic passage. Phys. Rev. A 72, 012339–012344 (2005b)

    Article  ADS  MATH  Google Scholar 

  • Amniat-Talab, M., Nader-Ali, R., Guérin, S., Saadati-Niari, M.: Creation of atomic W state in a cavity by adiabatic passage. Opt. Commun. 283, 622–627 (2010)

    Article  ADS  Google Scholar 

  • Amniat-Talab, M., Saadati-Niari, M., Guérin, S.: Quantum state engineering in ion-traps via adiabatic passage. Eur. Phys. J. D 66, 216–225 (2012)

    Article  ADS  Google Scholar 

  • Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964)

    Google Scholar 

  • Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bollinger, J.J., Itano, W.M., Wineland, D.J., Heinzen, D.J.: Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649–R4652 (1996)

    Article  ADS  Google Scholar 

  • Bose, S., Knight, P.L., Plenio, M.B., Vedral, V.: Proposal for teleportation of an atomic state via cavity decay. Phys. Rev. Lett. 83, 5158–5161 (1999)

    Article  ADS  Google Scholar 

  • Bouwmeester, D., Pan, W.J., Daniell, M., Weinfurter, H., Zeilinger, A.: Observation of three-photon Greenberger–Horne–Zeilinger entanglement. Phys. Rev. Lett. 82, 1345–1349 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)

    Article  ADS  Google Scholar 

  • Dur, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314–62326 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  • Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Gaubatz, U., Rudecki, P., Schiemann, S., Bergmann, K.: Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser: a new concept and experimental results. J. Chem. Phys. 92, 5363–5376 (1990)

    Article  ADS  Google Scholar 

  • Goto, H., Ichimura, K.: Multiqubit controlled unitary gate by adiabatic passage with an optical cavity. Phys. Rev. A 70, 012305–012313 (2004)

    Article  ADS  Google Scholar 

  • Greenberger, D.M., Horner, M., Shimony, A., Zeilinger, A.: Bells theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hao, S.Y., Xia, Y., Song, J., An, N.B.: One-step generation of multiatom Greenberger–Horne–Zeilinger states in separate cavities via adiabatic passage. J. Opt. Soc. Am. 30, 468–474 (2013)

    Article  ADS  Google Scholar 

  • Ivanov, P.A., Torosov, B.T., Vitanov, N.V.: Navigation between quantum states by quantum mirrors. Phys. Rev. A 75, 012323–012332 (2007)

    Article  ADS  Google Scholar 

  • Ivanov, P.A., Vitanov, N.V.: Synthesis of arbitrary unitary transformations of collective states of trapped ions by quantum householder reflections. Phys. Rev. A 77, 012335–012342 (2008)

    Article  ADS  Google Scholar 

  • Kral, P., Thanopulos, L., Shapiro, M.: Colloquium: coherently controlled adiabatic passage. Rev. Mod. Phys. 79, 53–77 (2007)

    Article  ADS  Google Scholar 

  • Li, Y.L., Fang, M.F., Xiao, X., Zeng, K., Wu, C.: Greenberger–Horne–Zeilinger state generation of three atoms trapped in two remote cavities. J. Phys. B 43, 085501–085507 (2010)

    Article  ADS  Google Scholar 

  • Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  • Pan, J.W., Zeilinger, A.: Greenberger–Horne–Zeilinger-state analyzer. Phys. Rev. A 57, 2208–2211 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  • Parkins, A.S., Marte, P., Zoller, P., Kimble, H.J.: Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence. Phys. Rev. Lett. 71, 3095–3098 (1993)

    Article  ADS  Google Scholar 

  • Pellizzari, T.: Quantum networking with optical fibres. Phys. Rev. Lett. 79, 5242–5245 (1997)

    Article  ADS  Google Scholar 

  • Sangouard, N., Lacour, X., Gurin, S., Jauslin, H.R.: Fast SWAP gate by adiabatic passage. Phys. Rev. A 72, 062309–062314 (2005)

    Article  ADS  Google Scholar 

  • Serafini, A., Mancini, S., Bose, S.: Distributed quantum computation via optical fibers. Phys. Rev. Lett. 96, 010503–010507 (2006)

    Article  ADS  Google Scholar 

  • van Enk, J., Cirac, J.I., Zoller, P.: Ideal quantum communication over noisy channels: a quantum optical implementation. Phys. Rev. Lett. 78, 4293–4296 (1997)

    Article  ADS  Google Scholar 

  • Vitanov, N.V.: Adiabatic population transfer by delayed laser pulses in multistate systems. Phys. Rev. A 58, 2295–2309 (1998)

    Article  ADS  Google Scholar 

  • Vitanov, N.V., Suominen, K.A., Shore, B.W.: Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage. J. Phys. B 32, 4535–4546 (1999)

    Article  ADS  Google Scholar 

  • Vitanov, N.V., Fleischhauer, M., Shore, B.W., Bergmann, K.: Coherent manipulation of atoms and molecules by sequential laser pulses. Adv. At. Mol. Opt. Phys. 46, 55–190 (2001)

    Article  ADS  Google Scholar 

  • Yang, P.C., Han, S.: Preparation of Greenberger–Horne–Zeilinger entangled states with multiple superconducting quantum-interference device qubits or atoms in cavity QED. Phys. Rev. A 70, 062323–062329 (2004)

    Article  ADS  Google Scholar 

  • Yin, Z.Q., Li, F.L.: Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber. Phys. Rev. A 75, 012324–012348 (2007)

    Article  ADS  Google Scholar 

  • Zheng, B.S.: One-step synthesis of multiatom Greenberger–Horne–Zeilinger states. Phys. Rev. Lett. 87, 230404–230408 (2001)

    Article  ADS  Google Scholar 

  • Zheng, A.: Generation of Greenberger–Horne–Zeilinger states for multiple atoms trapped in separated cavities. Eur. Phys. J. D 54, 719–722 (2009)

    Article  ADS  Google Scholar 

  • Zheng, A., Liu, J.: Generation of an N-qubit Greenberger–Horne–Zeilinger state with distant atoms in bimodal cavities. J. Phys. B 44, 165501–165509 (2011)

    Article  ADS  Google Scholar 

  • Zou, B.X., Mathis, W.: Generating a four-photon polarization-entangled cluster state. Phys. Rev. A 71, 032308–032312 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge the financial support of the MSRT of Iran, Urmia University (Research Grant N. 92/science/009) and University of Mohaghegh Ardabili.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Amniat-Talab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izadyari, M., Saadati-Niari, M., Khadem-Hosseini, R. et al. Creation of N-atom GHZ state in atom-cavity-fiber system by multi-state adiabatic passage. Opt Quant Electron 48, 71 (2016). https://doi.org/10.1007/s11082-015-0356-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-015-0356-2

Keywords

Navigation