Skip to main content
Log in

Fabrication of metal nano-wires by laser interference lithography using a tri-layer resist process

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This article presents a general method for fabrication of large-area metal nano-wires using laser interference lithography and a lift-off process. A tri-layer resist structure consisting of a thin top photoresist, a metal inter-layer and a thick bottom photoresist is introduced to fabricate thick photoresist nano-patterns. Laser interference lithography is used to pattern the top thin photoresist and the lift-off process is applied to acquire nano-patterns with high duty cycle. Thick photoresist nano-patterns with high duty cycle are fabricated by the reactive ion etching process. Using the thick photoresist nano-patterns, metal nano-wires with a 100 nm square cross-section are successfully fabricated by a lift-off process. The method presented in this article can produce large-area metal nano-wires with high-throughput and low cost, as compared with the traditional method using electron beam lithography. Moreover, laser interface lithography is a maskless lithography method and can fabricate nano-patterns with high uniformity and good period controllability, which makes this method a promising way to manufacture metal nano-wires devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson, E.H., Horwitz, C.M., Smith, H.I.: Holographic lithography with thick photoresist. Appl. Phys. Lett. 43(9), 874–875 (1983)

    Article  ADS  Google Scholar 

  • Chu, H.S., Ewe, W.B., Koh, W.S., Li, E.P.: Remarkable influence of the number of nanowires on plasmonic behaviors of the coupled metallic nanowire chain. Appl. Phys. Lett. 92(10), 103103-1–103103-3 (2008)

    ADS  Google Scholar 

  • Du, K., Wathuthanthri, I., Mao, W.D., Xu, W., Choi, C.H.: Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography. Nanotechnology 22(28), 285306–285313 (2011)

    Article  Google Scholar 

  • Dylewicz, R., Patela, S., Paszkiewicz, R., Tlaczala, M., Bartkiewica, S., Miniewicz, A.: About holographic lithography for grating coupler fabrication in gallium nitride grown by MOVPE on sapphire substrate. Proc. SPIE 5956, 5961J-1–59561J-9 (2005)

    Google Scholar 

  • Dylewicz, R., Patela, S., Paszkiewicz, R., Tlaczala, M., Bartkiewicz, S., Miniewiewicz, A.: Holographic Lithography for Grating Coupler Fabrication in Gallium Nitride Grown on Sapphire Substrate. IEEE International Students and Young Scientists Workshop “Photonics and Microsystems”, 21–25 (2005)

  • Farhoud, M., Ferrera, J., Lochtefeld, A.J., Murphy, T.E., Schattenburg, M.L., Carter, J., Ross, C.A., Smith, H.I.: Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist. J. Vac. Sci. Technol. B 17(6), 3182–3185 (1999)

    Article  Google Scholar 

  • Fernandez, A., Decker, J.Y., Herman, S.M., Phillion, D.W., Sweeney, D.W., Perry, M.D.: Methods for fabricating arrays of holes using interference lithography. J. Vac. Sci. Technol. B 15(6), 2439–2443 (1997)

    Article  Google Scholar 

  • Geissler, M., Wolf, H., Stutz, R., Delamarche, E., Crummt, U.W., Michel, B., Bietsch, A.: Fabrication of metal nanowires using microcontact printing. Langmuir 19(15), 6301–6311 (2003)

    Article  Google Scholar 

  • Gunawan, O., Hoe, L.W., Ooi, B.S., Chan, Y.C., Lam, Y.L., Zhou, Y.: Development of a laser holographic interference lithography system. SPIE Proc. 3896, 515–522 (1999)

    Article  ADS  Google Scholar 

  • Kuiper, S., van Wolferen, H., van Rijin, C., Nijdam, W., Krijnen, G., Elwenspoek, M.: Fabrication of microsieves with sub-micron pore size by laser interference lithography. J. Micromech. Microengin. 11(1), 33–37 (2001)

    Article  ADS  Google Scholar 

  • Kulkarni, G.U., Radha, B.: Metal nanowire grating patterns. Nanoscale 2(10), 2035–2044 (2010)

    Article  ADS  Google Scholar 

  • Namatsu, H., Ozaki, Y., Hirata, K.: High-resolution trilevel resist. J. Vac. Sci. Technol. 21(2), 672–676 (1982)

    Article  ADS  Google Scholar 

  • Owe-Yang, D.C., Yano, T., Ueda, T., Iwabuchi, M., Ogihara, T., Shirai, S.: Development of high-performance tri-layer material. Proc. SPIE 6923, 69232I-1–69232I-9 (2008)

    Article  Google Scholar 

  • Park, M., Chaikin, P.M., Register, R.A., Adamson, D.H.: Large area dense nanoscale patterning of arbitrary surfaces. Appl. Phys. Lett. 79(2), 257–259 (2001)

    Article  ADS  Google Scholar 

  • Savas, T.A., Farhoud, M., Smith, H.I., Hwang, M., Ross, C.A.: Properties of large-area nanomagnet arrays with 100 nm period made by interferometric lithography. J. Appl. Phys. 85(8), 6160–6162 (1999)

    Article  ADS  Google Scholar 

  • Schattenburg, M.L., Aucoin, R.J., Fleming, R.C.: Optically matched trilevel resist process for nanostructure fabrication. J. Vac. Sci. Technol. B 13(6), 3007–3011 (1995)

    Article  Google Scholar 

  • Sharp, D.N., Campbell, M., Dedman, E.R., Harrison, M.T., Denning, R.G., Turberfield, A.J.: Photonic crystals for the visible spectrum by holographic lithography. Opt. Quant. Electron. 34(1–3), 3–12 (2002)

    Article  Google Scholar 

  • Stillwagon, L.E., Kornblit, A., Taylor, G.N.: Thin titanium dioxide films as interlayers in trilayer resist structures. J. Vac. Sci. Technol. B 6(6), 2229–2233 (1988)

    Article  Google Scholar 

  • van de Groep, J.V., Spinelli, P., Polman, A.: Transparent conducting silver nanowire networks. Nano Lett. 12(6), 3138–3144 (2012)

    Article  Google Scholar 

  • Wang, J.J., Walters, F., Liu, X.M., Sciortino, P., Deng, X.G.: High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids. Appl. Phys. Lett. 90(6), 061104-1–061104-3 (2007)

    ADS  Google Scholar 

  • Yogeswaran, U., Chen, S.M.: A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensor 8(1), 290–313 (2008)

    Article  Google Scholar 

  • Zheng, M., Yu, M., Liu, Y., Skomski, R., Liou, S.H., Sellmyer, D.J., Petryakov, V.N., Verevkin, Y.K., Polushkin, N.I., Salashchenko, N.N.: Magnetic nanodot arrays produced by direct laser interference lithography. Appl. Phys. Lett. 79(16), 2606–2608 (2001)

    Article  ADS  Google Scholar 

  • Zhou, Y., Chen, X.Y., Fu, Y.H., Vienne, G., Kuznetsov, A.I., Lukyanchuk, B.: Fabrication of large-area 3D optical fishnet metamaterial by laser interference lithography. Appl. Phys. Lett. 103(12), 123116-1–123116-4 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National High Technology Research and Development Program of China (Nos. 2011AA03A112) and the National Natural Science Foundation of China (Nos. 11374340, 11204360 and 61210014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longgui Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Dai, L., Yang, F. et al. Fabrication of metal nano-wires by laser interference lithography using a tri-layer resist process. Opt Quant Electron 48, 24 (2016). https://doi.org/10.1007/s11082-015-0286-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-015-0286-z

Keywords

Navigation