Thermo optical properties of Ag nanoparticles produced by pulsed laser ablation

Abstract

The linear and nonlinear optical properties of silver nanoparticles have been investigated experimentally. Colloidal nanoparticle samples were synthesized by laser ablation at various fluences. The samples were characterized by linear absorption spectroscopy, transmission electron microscopy and dynamic light scattering methods. The behavior of nonlinear refractive index of nanoparticles was studied using the close and open Z-scan techniques by low power CW laser beam. Observation of asymmetrical configurations of the Z-scan curve indicates that nonlinear refraction occurring in the Ag samples is related to the thermo optical process. In addition, the observed optical limiting behavior is due to nonlinear refraction of samples arising from thermal lens formation under low power CW excitation. The optimum position for samples as the optical limiter based on self-defocusing effect is the valley point. When the illumination laser power is low, the self-defocusing effect is mainly dominated. Actually laser fluence variation during the ablation procedure leads to concentration variation of nanoparticles in suspensions which in turn affect the optical properties of samples. The dependence of the nonlinear properties on morphological parameters, metal concentration, and particle size have been explained by experimental results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Aleali, H., Sarkhosh, L., Eslamifar, M., Karimzadeh, R., Mansour, N.: Thermo-optical properties of colloids Enhanced by gold nanoparticles. Jpn. J. Appl. Phys. (2010). doi:10.1143/JJAP.49.085002

    Google Scholar 

  2. Chen, G.X., Hong, M.H., Chong, T.C.: Preparation of carbon nanoparticles with strong optical limiting properties by laser ablation in water. J. Appl. Phys. 95(3), 1455–1459 (2004)

    Article  ADS  Google Scholar 

  3. Cuppo, F., Figueiredo Neto, A.M., Gomez, S.L., Palffy-Muhoray, P.: Thermal-lens model compared with the Sheik-Bahae formalism in interpreting Z-scan experiments on lyotropic liquid crystals. J. Opt. Soc. Am. B 19, 1342–1348 (2002)

    Article  ADS  Google Scholar 

  4. Dorranian, D., Golian, Y.: Effect of radio frequency plasma treatment on the nonlinear refractive index and absorption coefficient of red lake doped polyvinyl chloride film. Opt. Quant. Electron. (2014). doi:10.1007/s11082-014-0076-z

    Google Scholar 

  5. Dorranian, D., Tajmir, Sh, Khazanehfar, F.: Laser fluence on the characteristics of Ag nanoparticles produced by laser ablation. Soft Nanosci. Lett. 3, 93–100 (2013)

    Article  Google Scholar 

  6. Fang, H., Du, C., Qu, S., Li, Y., Song, Y., Li, H., Liu, H., Zhu, D.: Self-assembly of the [60]fullerene-substituted oligopyridines on Au nanoparticles and the optical nonlinearities of the Nanoparticles. Chem. Phys. Lett. 364, 290–296 (2002)

    Article  ADS  Google Scholar 

  7. Feng, M., Zhan, H., Chen, Y.: Nonlinear optical and optical limiting properties of graphene families. Appl. Phys. Lett. (2010). doi:10.1063/1.3279148

    Google Scholar 

  8. Gao, Y., Wang, Y., Song, Y., Li, Y., Qu, S., Liu, H., Dong, B., Zu, J.: Strong optical limiting property of a novel silver nanoparticle containing derivative. Opt. Commun. 223, 103–108 (2003)

    Article  ADS  Google Scholar 

  9. Garcia, M.A.: Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D Appl. Phys. (2011). doi:10.1088/0022-3727/44/28/283001

    Article  Google Scholar 

  10. Gayathri, C., Ramalingam, A.: Studies of third-order optical nonlinearities and optical limiting properties of azodyes. Spectrochim Acta A 69, 980–984 (2008)

    Article  ADS  Google Scholar 

  11. Golian, Y., Dorranian, D.: Effect of thickness on the optical nonlinearity of gold colloidal nanoparticles prepared by laser ablation. Opt. Quant. Electron. 46, 809–819 (2014)

    Article  Google Scholar 

  12. Haider, A., Sengupta, S., Abedin, K.M., Aminul, I.: Fabrication of gold nanoparticles in water by laser ablation technique and their applaction. Appl. Phys. A 11, 6542–6550 (2011)

    Google Scholar 

  13. Hirsch, L.R., Stafford, R.J., Bankson, J.A., Sershen, S.R., Rivera, B., Price, R.E., Hazle, J.D., Halas, N.J., West, J.L.: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. PNAS 100, 13549–13554 (2003)

    Article  ADS  Google Scholar 

  14. Jeon, J.S., Yeh, C.: Studies of silver nanoparticles by laser ablation method. J. Chin. Chem. Soc. 45, 721–726 (1998)

    Article  Google Scholar 

  15. Jia, T., He, T., Li, P., Mo, Y., Cui, Y.: A study of the thermal induced nonlinearity of Au and Ag colloids prepared by the chemical reaction method. Opt. Laser Technol. 40, 936–940 (2008)

    Article  ADS  Google Scholar 

  16. Karimzadeh, R., Mansour, N.: The effect of concentration on the thermo-optical properties of colloidal silver nanoparticles. Opt. Laser Technol. 42, 783–789 (2010)

    Article  ADS  Google Scholar 

  17. Karimzadeh, R., Aleali, H., Mansour, N.: Thermal nonlinear refraction properties of Ag2S semiconductor nanocrystals with its application as a low power optical limiter. Opt. Commun. 284, 2370–2375 (2011)

    Article  ADS  Google Scholar 

  18. Kurian, P.A.: Synthsis of strongly confined quasi Zero dimensional systems, characterization and applications. Thesis doctoral of philosophy (2008)

  19. Link, S., El-Sayed, M.A.: Shape and size dependence of radiative, non-radiative and photo-thermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 19(3), 409–453 (2000)

    Article  Google Scholar 

  20. Mafune, F., Kohno, J.Y., Takeda, Y., Kondow, T.: Growth of gold clusters into nanoparticles in a solution following laser-induced fragmentation. J. Phys. Chem. B 106, 8555–8561 (2002)

    Article  Google Scholar 

  21. Mahendia, S., Tomar, A.K., Chahal, R.P., Goyal, P., Kumar, S.: Optical and structural properties of poly(vinyl alcohol) films embedded with citrate-stabilized gold nanoparticles. J. Phys. D Appl. Phys. (2011). doi:10.1088/0022-3727/44/20/205105

    Google Scholar 

  22. Martin, R.B., Meziani, M.J., Pathak, P., Riggs, J.E., Cook, D.E., Perera, S., Sun, Y.: Optical limiting of silver containing nanoparticles. Opt. Mater. 29, 788–793 (2007)

    Article  ADS  Google Scholar 

  23. Papadopoulos, M.G., Sadlej, A.J., Leszczynski, J.: Non-linear optical properties of matter from molecules to condensed phases, vol. 15. Springer (2006)

  24. Pelton, M., Liu, M., Park, S., Scherer, N., Sionnest, P.G.: Optical nonlinearities of plasmons in single gold nanorods. In: Quantum electronics and laser science conference proceeding, Baltimure, USA, pp. 103–105 (2005)

  25. Prochazka, M., Mojzes, P., Stepanek, J., Clckova, B., Turpin, P.Y.: Probing applications of laser-ablated Ag colloids in SERS spectroscopy: improvement of ablation procedure and SERS spectral testing. Anal. Chem. 69, 5103–5108 (1997)

    Article  Google Scholar 

  26. Qu, S., Song, Y., Du, C., Gao, Y.W.Y., Liu, S., Li, Y., Zhu, D.: Nonlinear optical properties in three novel nanocomposites with gold nanoparticles. Opt. Commun. 196, 317–323 (2001)

    Article  ADS  Google Scholar 

  27. Qu, S., Du, C., Song, Y., Gao, Y.W.Y., Liu, S., Li, Y., Zhu, D.: Optical nonlinearities and optical limiting properties in gold nanoparticles by ligands. Chem. Phys. Lett. 356, 403–408 (2002a)

    Article  ADS  Google Scholar 

  28. Qu, S., Song, Y., Liu, H., Wang, Y., Gao, Y., Liu, S., Zhang, X., Li, Y., Zhu, D.: A theoretical and experimental study on optical limiting in platinum nanoparticles. Opt. Commun. 203, 283–288 (2002b)

    Article  ADS  Google Scholar 

  29. Sathiyamoorthy, K., Vijayan, C., Kothiyal, M.P.: Low power optical limiting in ClAL-phthalocyanine due to self-defocusing and self phase modulation effects. Opt. Mater. 31, 79–86 (2008)

    Article  ADS  Google Scholar 

  30. Sendhil, K., Vijayan, C., Kothiyal, M.P.: Low threshold optical power limiting of CW laser illumination based on nonlinear refraction in zinctetraphenylprophyrin. Opt. Laser Technol. 38(7), 512–515 (2004)

    Article  ADS  Google Scholar 

  31. Sheik-Bahae, M., Hasselbeck, M.P.: OSA handbook of optics IV. Chapter 17 (2000)

  32. Sheik-Bahae, M., Said, A.A., Wei, T.H., Hage, D., Styland, E.W.: Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quant. Electron. 26, 760–769 (1990)

    Article  ADS  Google Scholar 

  33. Souza, R.F., Alencar, M.A.R.C., da Silva, E.C., Meneghetti, M.R., Hickman, J.M.: Nonlinear optical properties of Au nanoparitcles colloidal system: local and nonlocal response. Appl. Phys. Lett. (2008). doi:10.1063/1.2929385

    Google Scholar 

  34. Sreeja, R., Aneesh, P.M., Aravind, A., Reshmi, R., Philip, R., Jayaraj, M.K.: Size dependent optical nonlinearitity of Au nanocrystals. J. Electrochem. Soc. 156(10), 167–172 (2009)

    Article  Google Scholar 

  35. Sudheesh, P., Chandrasekharan, K.: χ3 measurements in Schiff’s base derivatives: effect of metal nanoparticles. Solid State Commun. 152, 268–272 (2012)

    Article  ADS  Google Scholar 

  36. Wang, Q., Xu, J., Xie, R.H.: “Nonlinear optics of nanoparticles and naocomposites. Encycl. Nanosci. Nanothecnol 8, 101–111 (2004)

    Google Scholar 

  37. Yang, X., Qi, S., Chen, K., Zhang, C., Tian, J., Wu, Q.: Optical limiting characteristics of mercury dithizonate in polymer film. Opt. Mater. 27, 1358–1362 (2005)

    Article  ADS  Google Scholar 

  38. Zhang, X., He, T., Wang, C., Zhang, J.: Nonlinear optical and florescent properties of Ag aqueous colloid prepared by silver nitrate reduction. J. Nanomater. (2010). doi:10.1155/2010/129067

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Davoud Dorranian.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rashidian, M., Ghoranneviss, M. & Dorranian, D. Thermo optical properties of Ag nanoparticles produced by pulsed laser ablation. Opt Quant Electron 47, 3729–3745 (2015). https://doi.org/10.1007/s11082-015-0242-y

Download citation

Keywords

  • Laser ablation
  • Nanoparticle
  • Optical limiting
  • Thermo optic properties
  • Z-scan
  • Mie theory
  • Surface plasmon resonance