Skip to main content
Log in

Binary optimization of plasmonic nano bi-domes to design an optical clocking

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Here, we theoretically suggest the possibility of optical cloaking by employing the binary optimization of plasmonic nano-bi-dome. The proposed cloaking mechanism is based on reducing the total scattering coefficient in optical frequency. Since the scattering coefficient depends strongly on the number of plasmonic nano-particles and the nano particles location, binary particle swarm optimization (BPSO) algorithm is proposed to design an optimized array of the plasmonic nano-bi-domes in order to achieve the minimum scattering coefficient in the optical frequency. In BPSO, a swarm consists of a matrix with binary entries, control the presence (‘1’) or the absence (‘0’) of nano bi-domes in the array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akhlaghi, M., Emami, F.: Fuzzy adaptive modified PSO-algorithm assisted to design of photonic crystal fiber raman amplifier. J. Opt. Soc. Korea 17, 237–241 (2013)

    Article  Google Scholar 

  • Akhlaghi, M., Emami, F., Nozhat, N.: Binary TLBO algorithm assisted for designing plasmonic nano bi-pyramids-based absorption coefficient. Mod. Optics. 61, 1092–1096 (2014a)

    Article  ADS  Google Scholar 

  • Akhlaghi, M., Nozhat, N., Emami, F.: Investigating the optical switch using dimer plasmonic nano-rods. Nanotechnol. IEEE Trans. 13, 1172–1175 (2014b)

    Article  ADS  Google Scholar 

  • Alitalo, P., Tretyakov, S.A.: Electromagnetic cloaking with metamaterials. Mater. Today 12, 22–29 (2009)

    Article  Google Scholar 

  • Alù, A., Engheta, N.: Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. 72, 016623 (2005a)

    ADS  Google Scholar 

  • Alù, A., Engheta, N.: Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 72, 0166239 (2005b)

    Article  Google Scholar 

  • Alù, A., Engheta, N.: Plasmonic and metamaterial cloaking: physical mechanisms and potentials. J. Opt. A 10, 093002 (2008a)

    Article  ADS  Google Scholar 

  • Alù, A., Engheta, N.: Multifrequency optical invisibility cloak with layered plasmonic shells. Phys. Rev. 100, 113901 (2008b)

    Google Scholar 

  • Argyropoulos, C., et al.: Nonlinear plasmonic cloaks to realize giant all-optical scattering switching. Phys. Rev. Lett. 10826, 263905 (2012)

    Article  ADS  Google Scholar 

  • Becker, J., Trügler, A., Jakab, A.: The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics J. 2, 161–167 (2010)

    Article  Google Scholar 

  • Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley, New York (1998)

    Book  Google Scholar 

  • Chen, P.-Y., Alù, A.: Optical nanoantenna arrays loaded with nonlinear materials. Phys. Rev. B 82(23), 235405 (2010)

    Article  ADS  Google Scholar 

  • Cummer, S.A., Schurig, D.: One path to acoustic cloaking. New J. Phys. 9, 45 (2007)

    Article  ADS  Google Scholar 

  • Cummer, S.A., Popa, B.-I., Schurig, D., Smith, D.R., Pendry, J.B., Rahm, M., Starr, A.: Scattering theory derivation of a 3D acoustic cloaking shell. Phys. Rev. Lett. 74, 024301 (2008)

    Article  ADS  Google Scholar 

  • Draine, B.T., Flatau, P.J.: Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A 11, 1491–1499 (1994)

    Article  ADS  Google Scholar 

  • Emami, F., Akhlaghi, M.: Gain ripple decrement of S-band Raman amplifier. J. Photo. Technol. Lett. 24, 1349–1352 (2012)

    Article  ADS  Google Scholar 

  • Forestiere, C., Miano, G., Boriskina, S.V., Negro, L.D.: The role of nanoparticle shapes and deterministic aperiodicity for the design of nanoplasmonic arrays. Opt. Express 17, 9648–9661 (2009)

    Article  ADS  Google Scholar 

  • Howell, J.C., Benjamin Howell, J.: Simple, broadband, optical spatial cloaking of very large objects. arXiv preprint arXiv:1306.0863 (2013)

  • Jin, J.M.: The Finite Element Method in Electromagnetics, 2nd edn. Wiley, New York (2002)

    MATH  Google Scholar 

  • Krasavin, V.A., Zayats, A.V.: Guiding light at the nanoscale: numerical optimization ultrasubwavelength metallic wire plasmonic waveguides. Opt. Lett. 36, 3127–3129 (2011)

    Article  ADS  Google Scholar 

  • Le Ru, E.C., Etchegoin, P.G.: “Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects, 1st edn. Elsevier Science, Amsterdam (2008)

    Google Scholar 

  • Milton, G.W., Briane, M., Willis, J.R.: On cloaking for elasticity and physical equations with a transformation invariant form. New J. Phys. 8, 248 (2006)

    Article  ADS  Google Scholar 

  • Myroshnychenko, V., Rodríguez-Fernández, J., Pastoriza-Santos, I., Funston, A.M., Novo, C., Mulvaney, P., Liz-Marzán, L.M., de Abajo, F.J.G.: Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 37, 1792–1805 (2008)

    Article  Google Scholar 

  • Norris, A.N.: Acoustic cloaking theory. Proc. R. Soc. A 464, 2411–2434 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312, 1780–1782 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Rainwater, D., Kerkhoff, A., Melin, K., Soric, J.C., Moreno, G., Alu, A.: Experimental verification of threedimensional plasmonic cloaking in free-space. New J. Phys. 14, 013054 (2012)

    Article  ADS  Google Scholar 

  • Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)

    Article  ADS  Google Scholar 

  • Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite Difference Time Domain Method, 2nd edn. Artech House, Norwood, MA (2000)

    Google Scholar 

  • Tretyakov, S., Alitalo, P., Luukkonen, O., Simovski, C.: Broadband electromagnetic cloaking of long cylindrical objects. Phys. Rev. Lett. 103, 103905 (2009)

    Article  ADS  Google Scholar 

  • Wang, H.L., Zhang, X.D.: Achieving multifrequency transparency with cylindrical plasmonic cloak. J. Appl. Phys. 106, 053302 (2009)

    Article  ADS  Google Scholar 

  • Zhou, F., et al.: Hiding a realistic object using a broadband terahertz invisibility cloak. Scientific Reports 1 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Rahmanian Koushkaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koushkaki, H.R., Akhlaghi, M. & Balvasi, M. Binary optimization of plasmonic nano bi-domes to design an optical clocking. Opt Quant Electron 47, 3589–3597 (2015). https://doi.org/10.1007/s11082-015-0232-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-015-0232-0

Keywords

Navigation