Skip to main content
Log in

Tunable far infrared detection using quantum rings-in-well intersubband photodetectors

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A novel design of quantum ring intersubband photodetectors is proposed based on quantum rings-in-well structure and its performance characteristics studied by simulation. The photon absorption occurs for intersubband transitions between quantum ring sub-bands and well states. The detector is expected to be better controlled over operating wavelength and normal incidence sensitivity in far infrared. Since the quantum well states change by electric field, the peak responsivity wavelength is voltage tunable. Our results show that increasing the bias voltage to 5 V leads to a red-shift about 4 μm in peak wavelength. For proposed detector a quantum–mechanical approach is introduced for calculation of photoconductive gain. Peak responsivity about 0.6 A/W at λ = 20 μm is achieved at T = 77 K using this detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andrews, J., Jang, W.Y., Pezoa, J.E., Sharma, Y.D., Lee, S.J., Noh, S.K., Hayat, M.M., Restaino, S., Teare, S.W., Krishna, S.: Demonstration of a bias tunable quantum dots-in-a-well focal plane array. Infrared Phys. Tech. 52, 380–384 (2009)

    Article  ADS  Google Scholar 

  • Asadpour, S.H., Golsanamlou, Z., Soleimani, H.R.: Infrared and terahertz signal detection in a quantum dot nanostructure. Phys. E 54, 45–52 (2013)

    Article  Google Scholar 

  • Barve, A., Shah, S.Y., Shao, J., Vandervelde, T.E., Shenoi, R.V., Jang, W.-Y., Krishna, S.: Reduction in dark current using resonant tunneling barriers in quantum dots-in-a-well long wavelength infrared photodetector. Appl Phys. Lett. 93, 131115 (2008)

    Article  ADS  Google Scholar 

  • Bhattacharya, P., Krishna, S., Phillips, J., McCann, P.J., Namjou, K.: Carrier dynamics in self-organized quantum dots and their application to long-wavelength sources and detectors. J. Cryst. Growth 227, 27–35 (2001)

    Article  ADS  Google Scholar 

  • Bhattacharya, P., Stiff-Roberts, A.D., Chakrabarti, S.: Mid-infrared quantum dot photodetectors. Mid-infrared Semicond. Optoelectron. 118, 487–513 (2006)

    Article  ADS  Google Scholar 

  • Bhowmick, S., Huang, G., Guo, W., Lee, C.S., Bhattacharya, P., Ariyawansa, G., Perera, A.G.U.: High-performance quantum ring detector for the 1–3 terahertz range. Appl. Phys. Lett. 96, 231103 (2010)

    Article  ADS  Google Scholar 

  • Bockelmann, U., Bastard, G.: Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases. Phys. Rev. B 42, 8947–8951 (1990)

    Article  ADS  Google Scholar 

  • Chuang, S.L.: Physics of Photonic Devices. Wiley, New Jersey (2009)

    Google Scholar 

  • Dai, J.-H., Lin, Y.-L., Lee, S.-C.: Voltage-tunable dual-band In(Ga) As quantum-ring infrared photodetector. IEEE Photon. Technol. Lett. 19, 1511–1513 (2007)

    Article  ADS  Google Scholar 

  • Dai, J.H., Lee, J.H., Lee, S.C.: Transition mechanism of InAs quantum dot to quantum ring revealed by photoluminescence spectra. IEEE Photon. Technol. Lett. 20(16), 1372–1374 (2008a)

    Article  ADS  Google Scholar 

  • Dai, J.H., Lee, J.H., Lin, Y.L., Lee, S.C.: In(Ga) As quantum rings for terahertz detectors. Jpn. J. Appl. Phys. 47(4), 2924–2926 (2008b)

    Article  ADS  Google Scholar 

  • Ghadi, H., Adhikary, S., Agarwal, A., Chakrabarti, S.: Tuning in spectral response due to rapid thermal annealing on dot-in-a-well infrared photodetectors. Superlattice Microst. 65, 106–112 (2014)

    Article  ADS  Google Scholar 

  • Han, X., Li, J., Wu, J., Cong, G., Liu, X., Zhu, Q., Wang, Z.: Intersubband optical absorption in quantum dots-in-a-well heterostructures. J. Appl. Phys. 98, 053703 (2005)

    Article  ADS  Google Scholar 

  • Höglund, L., Holtz, P.-O., Ouattara, L., Asplund, C., Wang, Q., Almqvist, S., Petrini, E., Malm, H., Borglind, J., Smuk, S.: Quantum dots-in-a-well infrared photodetectors for long wavelength infrared detection. In: Proc. SPIE. 6401, Optical Materials in Defence Systems Technology III, pp. 640109–640122. International Society for Optics and Photonics (2006). doi:10.1117/12.690010

  • Huang, G., Guo, W., Bhattacharya, P., Ariyawansa, G., Perera, A.G.U.: A quantum ring terahertz detector with resonant tunnel barriers. Appl. Phys. Lett. 94, 101115 (2009)

    Article  ADS  Google Scholar 

  • Kargan, N.H., Farshi, M.K.M.: Effect of temperature on the current–voltage characteristics of GaAs/AlGaAs quantum cascade photodetectors. Phys. E 54, 336–340 (2013)

    Article  Google Scholar 

  • Karimi, M., Abedi, K., Zavvari, M.: Resonant cavity enhanced quantum ring photodetector at 20 μm wavelength. Opt. Quant. Electron. 45, 1249–1258 (2013)

    Article  Google Scholar 

  • Karimi, M., Abedi, K., Zavvari, M.: Improving the performance of a far-infrared quantum-ring-based photodetector utilizing asymmetric multi-barrier resonant tunneling. Infrared Phys. Tech. 62, 81–85 (2014)

    Article  ADS  Google Scholar 

  • Kochman, B., Stiff-Roberts, A., Chakrabarti, S., Phillips, J., Krishna, S., Singh, J., Bhattacharya, P.: Absorption, carrier lifetime, and gain in InAs–GaAs quantum-dot infrared photodetectors. IEEE J. Quantum Electron. 39, 459–467 (2003)

    Article  ADS  Google Scholar 

  • Krishna, S.: Quantum dots-in-a-well infrared photodetectors. Infrared Phys. Techol. 47, 153–163 (2005)

    Article  ADS  Google Scholar 

  • Gonga, L., Shua, Y., Xua, J., Zhub, Q., Wang, Z.: Numerical analysis on quantum dots-in-a-well structures by finite difference method. Superlattice Microst. 60, 311–319 (2013)

    Article  ADS  Google Scholar 

  • Lee, J.H., Dai, J.H., Chan, C.F., Lee, S.C.: In(Ga) As quantum ring terahertz photodetector with cutoff wavelength at 175 μm. IEEE Photon. Technol. Lett. 21(11), 721–723 (2009)

    Article  ADS  Google Scholar 

  • Li, S.S., Xia, J.B.: Electronic states of InAs/GaAs quantum ring. J. Appl. Phys. 89(6), 3434–3437 (2001)

    Article  ADS  Google Scholar 

  • Lim, H., Zhang, W., Tsao, S., Sills, T., Szafraniec, J., Mi, K., Movaghar, B., Razeghi, M.: Quantum dot infrared photodetectors: comparison of experiment and theory. Phys. Rev. B 72, 085332 (2005)

    Article  ADS  Google Scholar 

  • Lim, H., Movaghar, B., Tsao, S., Taguchi, M., Zhang, W., Quivy, A.A., Razeghi, M.: Gain and recombination dynamics of quantum-dot infrared photodetectors. Phys. Rev. B 74, 205321–2053218 (2006)

    Article  ADS  Google Scholar 

  • Majumdar, A., Choi, K.K., Rokhinson, L.P., Reno, J.L., Tsui, D.C.: Electron transfer in voltage tunable two-color infrared photodetectors. J. Appl. Phys. 91, 4623–4630 (2002a)

    Article  ADS  Google Scholar 

  • Majumdar, A., Choi, K.K., Rokhinson, L.P., Tsui, D.C.: Towards a voltage tunable two-color quantum-well infrared photodetector. App. Phys. Lett. 80, 538–540 (2002b)

    Article  ADS  Google Scholar 

  • Mir, A., Ahmadi, V.: Design and analysis of a new structure of InAs/GaAs QDIP for 8–12 μm infrared windows with low dark current. J. Modern Optics 56(15), 1704–1712 (2009)

    Article  MATH  ADS  Google Scholar 

  • Movaghar, B., Tsao, S., Pour, S.A., Yamanaka, T., Razeghi, M.: Gain and recombination dynamics in photodetectors made with quantum nanostructures: the quantum dot in a well and the quantum well. Phys. Rev. B 78, 115320 (2008)

    Article  ADS  Google Scholar 

  • Rogalski, A.: Infrared detectors: status and trends. Prog. Quantum Electron. 27, 091101 (2003)

    Article  ADS  Google Scholar 

  • Rogalski, A., Antoszewski, J., Faraone, L.: Third-generation infrared photodetector arrays. J. Appl. Phys. 105, 091101 (2009)

    Article  ADS  Google Scholar 

  • Ryzhii, V.: Intersubband Infrared Photodetectors, vol. 12. World Scientific, Singapore (2003)

    Google Scholar 

  • Shenoi, R.V., Attaluri, R.S., Siroya, A., Shao, J., Sharma, Y.D., Stintz, A., Vandervelde, T.E., Krishna, S.: Low-strain InAs/InGaAs/GaAs quantum dots-in-a-well infrared photodetector. J. Vac. Sci. Technol. B 26, 1136–1139 (2008)

    Article  Google Scholar 

  • Su, X., Chakrabarti, S., Bhattacharya, P., Ariyawansa, G., Perera, A.G.U.: A resonant tunneling quantum-dot infrared photodetector. IEEE J. Quantum Electron. 41(7), 974–979 (2005)

    Article  ADS  Google Scholar 

  • Su, X., Yang, J., Bhattacharya, P., Ariyawansa, G., Perera, A.: Terahertz detection with tunneling quantum dot intersublevel photodetector. Appl. Phys. Lett. 89(3), 031113–031117 (2006)

    Article  ADS  Google Scholar 

  • Towe, E., Pan, D.: Semiconductor quantum-dot nanostructures: their application in a new class of infrared photodetectors. IEEE J. Sel. Top. Quantum Electron. 6, 408–421 (2000)

    Article  Google Scholar 

  • Wu, W., Dey, D., Mohseni, H.: A voltage tunable quantum dot photodetector for terahertz detection. J. Phys. D Appl. Phys. 43, 155101–155106 (2010)

    Article  ADS  Google Scholar 

  • Yusefli, A., Zavvari, M.: Modeling of dark current and photo-response in quantum ring intersubband photodetectors. Opt. Quant. Electron. (2015). doi:10.1007/s11082-014-0116-8

  • Zavvari, M., Ahmadi, V.: Quantum dot based mid-IR single photon detector with self-quenching and self-recovering operation. IEEE Electron Device Lett. 34(6), 783–785 (2013)

    Article  ADS  Google Scholar 

  • Zavvari, M., Ahmadi, V.: Avalanche quantum dot-in-well long wavelength infrared photodetectors: linear and Geiger mode operation. Infrared Phys. Tech. 65, 72–76 (2014)

    Article  ADS  Google Scholar 

  • Zavvari, M., Ahmadi, V., Mir, A., Darabi, E.: Quantum dot infrared photodetector enhanced by avalanche multiplication. Electron. Lett. 48(10), 589–591 (2012)

    Article  Google Scholar 

  • Zhang, W., Lim, H., Taguchi, M., Tsao, S., Szafraniec, J., Movaghar, B., Razeghi, M.: High performance InAs quantum dot infrared photodetectors (QDIP) on InP by MOCVD. In: Quantum Sensing and Nanophotonic Devices II 2005, SPIE, pp. 326–333

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Zavvari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samadzadeh, R., Zavvari, M. & Hosseini, R. Tunable far infrared detection using quantum rings-in-well intersubband photodetectors. Opt Quant Electron 47, 3555–3565 (2015). https://doi.org/10.1007/s11082-015-0230-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-015-0230-2

Keywords

Navigation