Skip to main content
Log in

Fluorescence quenching of Rhodamine 6G with different concentrations by laser ablated gold nanoparticles

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Colloidal gold nanoparticles are prepared by laser ablation method and characterized by UV–Visible spectrometry and Transmission Electron Microscopy. Fluorescence quenching of Rhodamine 6G dye with different concentration, from 0.05 to 15 μM, in the presence of gold nanoparticles have been investigated. The optical absorption and fluorescence emission of samples are studied. Shift of the fluorescence peaks in the presence of gold nanoparticles are the same as the absorption peaks for different concentrations. The stokes shift of Rhodamine 6G in different concentrations with and without gold nanoparticles is constant. Experimental quantum yield are calculated. Due to the local field enhancement by gold nanoparticles, the absorbed power of the samples in presence of nanoparticles are increased and the fluorescence intensity and fluorescence quantum yield are decreased. Also, the energy transfer efficiency is measured. Experimental results showed that at dye concentration range of our studies the presence of gold nanoparticles in the mixture results in fluorescence quenching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed, S.A., Gergerly, J.S., Infante, D.: Energy transfer organic dye mixture lasers. J. Chem. Phys. 61, 1584–1585 (1974)

    Article  ADS  Google Scholar 

  • Arbeloa, F.L., Arbeloa, T.L., Arbeloa, I.L.: Handbook of advanced electronic and photonic materials and devices. In: Nalwa, H.S. (ed.), vol. 7 (2001)

  • Burda, C., Chen, X., Narayanan, R., El-Sayed, M.A.: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005)

    Article  Google Scholar 

  • Duarte, F.J., Hillman, L.W.: Dye Laser Principle. Academic Press, New York (1990)

    Google Scholar 

  • Dubertret, B., Calame, M., Libchaber, A.: Single-mismatch detection using gold-quenched fluorescent oligonucleotides. J. Nat. Biotechnol. 19, 365–370 (2001)

    Article  Google Scholar 

  • Dulkeith, E., Morteani, A.C., Niedereichholz, T., Klar, T.A., Felderman, J., Levi, S.A., van Veggel, F.C.J.M., Reinhoudt, D.N., Moller, M., Gittins, D.I.: Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys. Rev. Lett. 89, 203002–203005 (2002)

    Article  ADS  Google Scholar 

  • Evanoff, D.D., Chumanov, G.: Synthesis and optical properties of silver nanoparticles and arrays. Chem. Phys. Chem. 6, 1221–1231 (2005)

    Google Scholar 

  • Haiss, W., Thanh, N.T.K., Aveyard, J., Fernig, D.G.: Determination of size and concentration of gold nanoparticles from UV–Vis spectra. Anal. Chem. 79, 4215–4221 (2007)

    Article  Google Scholar 

  • Hajiesmaeilbaigi, F., Mohammadalipour, A., Sabbaghzadeh, J., Hoseinkhani, S., Fallah, H.R.: Preparation of silver nanoparticles by laser ablation and fragmentation in pure water. Laser Phys. Lett. 3, 252–256 (2006)

    Article  ADS  Google Scholar 

  • Hajiesmaeilbaigi, F., Motamedi, A.: Synthesis and characterization of composite Au/TiO2 nanoparticles by laser irradiation. Laser Phys. 20, 508–511 (2007)

    Article  ADS  Google Scholar 

  • Imahori, H., Fukuzumi, S.: Porphyrin monolayer-modified gold clusters as photoactive materials. Adv. Mater. 13, 1197–1199 (2001)

    Article  Google Scholar 

  • Imahori, H., Arimura, M., Hanada, T., Nishimura, Y., Yamazaki, I., Sakata, Y., Fukuzumi, S.: Photoactive three-dimensional monolayers: porphyrin-alkanethiolate-stabilized gold clusters. J. Am. Chem. Soc. 123, 335–336 (2001)

    Article  Google Scholar 

  • Ippen, E., Shank, C., Dienes, A.: Rapid photobleaching of organic laser dyes in continuously operated devices. IEEE. J. Quantum Elect. 7, 178–179 (1971)

    Article  ADS  Google Scholar 

  • Jain, P.K., Huang, X., El-Sayed, I.H., El-Sayed, M.A.: Noble metals on the nanoscale: optical and photothermal properties, and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578–1586 (2008)

    Article  Google Scholar 

  • Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B6, 4370–4379 (1972)

  • Karthikeyan, B.: Fluorescence quenching of Rhodamine-6G in Au nanocomposite polymers. J. Appl. Phys. 108, 084311–0843116 (2010)

    Article  ADS  Google Scholar 

  • Kumar, B.R., Basheer, N.S., Kurian, A., George, S.D.: Study of concentration dependent quantum yield of Rhodamine 6G by gold nanoparticles using thermal-lens technique. Appl. Phys. B 115, 335–342 (2014)

  • Lakowicz, J.R.: Principles of Fluorescence Spectroscopy. Kluwer Academic, NewYork (1999)

    Book  Google Scholar 

  • Marason, E.G.: Energy transfer dye mixture for argon-pumped dye laser operation in the 700–800 nm region. Opt. Commun. 40, 212–214 (1982)

    Article  ADS  Google Scholar 

  • Mie, G.: Contributions on the optics of turbid media, particularly colloidal metal solutions, Translation 79.21946 (Sandia National Laboratory). Ann. Phys. 25, 377–445 (1908)

    Article  MATH  Google Scholar 

  • Moeller, C.E., Verber, C.M., Adelman, A.H.: Laser pumping by excitation transfer in dye mixtures. Appl. Phys. Lett. 18, 278–280 (1971)

    Article  ADS  Google Scholar 

  • Nakamura, T., Hayashi, S.: Enhancement of dye fluorescence by gold nanoparticles: analysis of particle size dependence. Jpn. J. Appl. Phys. 44, 6833–6837 (2005)

    Article  ADS  Google Scholar 

  • Peleg, G., Lewis, A., Linial, M., Loew, L.M.: Nonlinear optical measurement of membrane potential aroundsingle molecules at selected cellular sites. Proc. Natl. Acad. Sci. USA 96, 6700–6704 (1999)

    Article  ADS  Google Scholar 

  • Powell, R.D., Halsey, C.M., Spector, D.L., Kaurin, S.L., McCann, J., Hainfeld, J.F.: Covalent fluorescent-gold immunoprobe simultaneous detection of a pre-mRNA splicing factor by light and electron microscopy. J. Histochem. Cytochem. 45, 947–956 (1997)

    Article  Google Scholar 

  • Powell, R.D., Halsey, C.M., Hainfeld, J.F.: Combined fluorescent and gold immunoprobes: reagents and methods for correlative light and electron microscopy. Microsc. Res. Tech. 42, 2–12 (1998)

    Article  Google Scholar 

  • Sebastain, P.J., Sathianandan, K.: Energy transfer Rhodamine 6G-Safranin-T dye laser. Opt. Commun. 32, 422–424 (1980)

    Article  ADS  Google Scholar 

  • Sebastian, S., Sooraj, S., Aaryan, A., Peter, J., Namboori, V.P.N, Vallaban, C.P.G.: Impact of laser ablated gold nanoparticles on absorption and fluorescence of Rhodamine 6G in Methyl Methacrylate. Optical Engineering, International Conference on ieeexplore.ieee.org (2012)

  • Shafer, F.P.: Dye Laser. Springer, Berlin (1990)

    Google Scholar 

  • Sigma-aldrich: Gold Nanoparticles: Properties and Applications, http://www.sigmaaldrich.com/materials-science/nanomaterials/gold-nanoparticles.html, (2012)

  • Thomas, K.G., Kamat, P.V.: Chromophore-functionalized gold nanoparticles. Acc. Chem. Res. 36, 888–898 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fereshteh Hajiesmaeilbaigi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzan, M., Hajiesmaeilbaigi, F. Fluorescence quenching of Rhodamine 6G with different concentrations by laser ablated gold nanoparticles. Opt Quant Electron 47, 3467–3476 (2015). https://doi.org/10.1007/s11082-015-0222-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-015-0222-2

Keywords

Navigation