Skip to main content
Log in

Optical properties of left-handed metamaterial involving coated nano-spheres

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We present theoretical results of a left-handed metamaterial engineered by a combination of coated and solid nano-spheres. The structure is a binary composite of CdSTiO 2 core–shell and Au solid nano-spheres which simultaneously dispersed in the air matrix. The effective medium parameters derived by extended Maxwell-Garnett (EMG) effective medium theory. It is shown the possibility of fine-tuning the metamaterial in order to observe left-handed behavior. The results are supplemented with transmittance curves, calculated by layer-multiple-scattering (LMS) method. The predictions of the EMG theory are in good agreement with those of LMS method; thus the (CdSTiO 2)/Au nano-composite is an appropriate choice as a three-dimensional left-handed metamaterial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ashour, A.: Physical properties of spray pyrolysed CdS thin films. Turk. J. Phys. 27, 551–558 (2003)

    Google Scholar 

  • Aspnes, D.E.: Local-field effects and effective-medium theory: a microscopic perspective. Am. J. Phys. 50, 704–709 (1982)

    Article  ADS  Google Scholar 

  • Bohren, C.: Applicability of effective-medium theories to problems of scattering and absorption by nonhomogeneous atmospheric particles. J. Atmos. Sci. 43, 468–475 (1986)

    Article  ADS  Google Scholar 

  • Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley-Interscience, New York (1983)

    Google Scholar 

  • Bruggeman, D.A.: Calculation of various physics constants in heterogenous substances I. Dielectricity constants and conductivity of mixed bodies from isotropic substances. Ann. Phys. 24, 636–664 (1935)

    Article  Google Scholar 

  • Doyle, W.T.: Optical properties of a suspension of metal spheres. Phys. Rev. B 39, 9852–9858 (1989)

    Article  ADS  Google Scholar 

  • Foteinopoulou, S.: Photonic crystals as metamaterials. Phys. B 407, 4056–4061 (2012)

    Article  ADS  Google Scholar 

  • Granqvist, C.G., Hunderi, O.: Optical properties of Af–SiO2 cermet films: a comparison of effective medium theories. Phys. Rev. B 18, 2897–2906 (1978)

    Article  ADS  Google Scholar 

  • Huang, K.C., Povinelli, M.L., Joannopoulos, J.D.: Negative effective permeability in polaritonic photonic crystals. Appl. Phys. Lett. 85, 543–545 (2004)

    Article  ADS  Google Scholar 

  • Ibach, H., Luth, H.: Solid-State Physics. Springer, Berlin (2003)

    Book  Google Scholar 

  • Lorenz, L.: Ueber die Refractionsconstante. Ann. Phys. 11, 70–103 (1880)

    Article  Google Scholar 

  • Luo, R.: Effective medium theories for the optical properties of three-component composite materials. Appl. Opt. 36, 8153–8158 (1997)

    Article  ADS  Google Scholar 

  • Maxwell-Garnett, J.C.: Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. Lond. Ser. A 203, 385–420 (1904)

    Article  ADS  Google Scholar 

  • Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)

    Article  ADS  Google Scholar 

  • Ruppin, R.: Evaluation of extended Maxwell-Garnett theories. Opt. Commun. 182, 273–279 (2000)

    Article  ADS  Google Scholar 

  • Sadeghi, H., Zolanvar, A., Ranjgar, A., Norouzi, R.: Terahertz response of ZnS/Ge and ZnO/Ge nanostructured composites. Plasmonics 9, 327–333 (2014a)

    Article  Google Scholar 

  • Sadeghi, H., Zolanvar, A., Ranjgar, A., Norouzi, R.: Effective permittivity and refractive index of TiO2/Ge and SiO2/Ge nanostructures at high frequencies. J. Electron. Mater. 43(11), 4294–4300 (2014b)

    Article  ADS  Google Scholar 

  • Shalaev, V.M.: Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films. Springer, Berlin (2000)

    Google Scholar 

  • Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)

    Article  ADS  Google Scholar 

  • Smith, D.R., Pendry, J.B., Wiltshire, M.C.K.: Metamaterials and negative refractive index. Science 305, 788–792 (2005)

    Article  ADS  Google Scholar 

  • Stefanou, N., Yannopapas, V., Modinos, A.: MULTEM 2: a new version of the program for transmission and band-structure calculations of photonic crystals. Comput. Phys. Commun. 132, 189–196 (2000)

    Article  MATH  ADS  Google Scholar 

  • The code EFFE2P can be downloaded from http://www.wave-scattering.com/effe2p.f

  • Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 10(4), 509–514 (1968)

    Article  ADS  Google Scholar 

  • Yannopapas, V., Moroz, A.: Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges. J. Phys. Condens. Matter 17, 3717–3734 (2005)

    Article  ADS  Google Scholar 

  • Zolanvar, A., Sadeghi, H., Ranjgar, A.: Effective dielectric properties of Au–ZnS and Au–ZnO plasmonics nanocomposites in the terahertz regime. Chin. Phys. Lett. 31(10), 106201 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Sadeghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, H., Zolanvar, A. & Ranjgar, A. Optical properties of left-handed metamaterial involving coated nano-spheres. Opt Quant Electron 47, 3301–3312 (2015). https://doi.org/10.1007/s11082-015-0208-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-015-0208-0

Keywords

Navigation