Numerical analysis of pump propagation and absorption in specially tailored double-clad rare-earth doped fiber


We present a numerical analysis of multi-mode pump absorption in recently proposed double-clad fiber with stadium-like cross section of the inner cladding and asymmetrically placed rare-earth doped core. Such a cross section allows easy splicing of the multi-mode pump fiber and single-mode signal fiber to the double-clad fiber. The full-vector finite element beam propagation method was used as a numerical tool. In order to allow excitation of the structure by arbitrary field profile, definite set of functionals satisfying unisolvence condition together with hybrid edge-nodal finite element basis was derived. The flat-top field profile and more realistic speckle pattern were considered in the analysis. The effect of coiling and simultaneous twisting of the fiber was taken into account. It was found that the twisting of the DC fiber significantly improves the pump absorption.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Doya, V., Legrand, O., Mortessagne, F.: Optimized absorption in a chaotic double-clad fiber amplifier. Opt. Lett. 26(12), 872–874 (2001)

    Article  ADS  Google Scholar 

  2. Dritsas, I., Sun, T., Grattan, K.T.V.: Stochastic optimization of conventional and holey double-clad fibres. J. Opt. A: Pure Appl. Opt. 9, 405–421 (2007)

    Article  ADS  Google Scholar 

  3. Fini, J.M.: Bend-resistant design of conventional and microstructure fibers with very large mode area. Opt. Express 14, 69–81 (2006)

    Article  ADS  Google Scholar 

  4. Fujisawa, T., Koshiba, M.: Full-vector finite-element beam propagation method for three-dimensional nonlinear optical waveguides. J. Lightwave Technol. 20, 1876–1884 (2002)

    Article  ADS  Google Scholar 

  5. Geuzaine, C., Remacle, J.F.: Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79, 1309–1331 (2009)

    MATH  MathSciNet  Article  Google Scholar 

  6. Heiblum, M., Harris, J.: Analysis of curved optical waveguides by conformal transformation. IEEE J. Quantum Electron. 11(3), 75–83 (1975)

    Article  ADS  Google Scholar 

  7. Ilchi-Ghazaani, M., Parvin, P.: Impact of cavity loss on a single-mode Yb:silica MOFPA array. Opt. Laser Technol. 65, 94–105 (2015)

    Article  ADS  Google Scholar 

  8. Koshiba, M., Tsui, Y.: Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems. J. Lightwave Technol 18(5), 737–743 (2000)

    Article  ADS  Google Scholar 

  9. Kouznetsov, D., Moloney, J.V.: Efficiency of pump absorption in double-clad fiber amplifiers. II. Broken circular symmetry. J. Opt. Soc. Am. B 19, 1259–1263 (2002)

    Article  ADS  Google Scholar 

  10. Leproux, P., Fevrier, S., Doya, V., Roy, P., Pagnoux, D.: Modeling and optimization of double-clad fiber amplifiers using chaotic propagation of the pump. Opt. Fiber Technol. 6, 324–339 (2001)

    Article  ADS  Google Scholar 

  11. Michael, C., Tascu, S., Doya, V., Legrand, O., Mortessagne, F.: Gain-controlled wave chaos in a chaotic optical fibre. J. Eur. Opt. Soc. 4, 09020 (2009)

  12. Mohamadian, S., Parvin, P., Ilchi-Ghazaani, M., Poozesh, K., Hejaz, K.: Measurement of gain and saturation parameters of a single-mode Yb:silica fiber amplifier. Opt. Fiber Technol. 19, 446–455 (2013)

    Article  ADS  Google Scholar 

  13. Monk, P.: Finite Element Methods for Maxwell’s Equations, pp. 126–142. Oxford University Press, New York (2003)

    Google Scholar 

  14. Mortensen, N.A.: Air-clad fibers: pump absorption assisted by chaotic wave dynamics? Opt. Express 15, 8988–8996 (2007)

    Article  ADS  Google Scholar 

  15. Parvin, P., Ilchi-Ghazaani, M., Bananej, A., Dastjerdi, Z.: Small signal gain and saturation intensity of a Yb: silica fiber MOPA system. Opt. Laser Technol. 44, 885–891 (2009)

    Article  ADS  Google Scholar 

  16. Peterka, P., Kasik, I., Matejec, V., Kubecek, V., Dvoracek, P.: Experimental demonstration of novel end-pumping method for double-clad fiber devices. Opt. Lett. 31(22), 3240–3242 (2006)

    Article  ADS  Google Scholar 

  17. Peterka, P., Kasik, I., Matejec, V., Karasek, M., Kanka, J., Honzatko, P., Kubecek, V.: Amplifier performance of double-clad Er/Yb-doped fiber with cross-section tailored for direct splicing to the pump and signal fibers. In: Technical Digest of the Optical Fiber Communication Conference (OFC07), paper JWA12, Anaheim, CA, USA (2007)

  18. Richardson, D.J., Nilsson, J., Clarkson, W.A.: High power fiber lasers: current status and future perspectives [Invited]. J. Opt. Soc. Am. B 27, B63–B92 (2010)

    Article  Google Scholar 

  19. Saitoh, K., Koshiba, M.: Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides. J. Lightwave Technol. 19(3), 405–413 (2001)

    Article  ADS  Google Scholar 

  20. Schulz, D., Glingener, C., Bludszuweit, M., Voge, E.: Mixed finite element beam propagation method. J. Lightwave Technol. 16, 1336–1342 (1998)

    Article  ADS  Google Scholar 

  21. Zervas, M.N., Codemard, C.A.: High power fiber lasers: a review. IEEE J. Sel. Top. Quantum Electron. 20(5), 1–23 (2014)

    Article  Google Scholar 

Download references


The authors would like to acknowledge fruitful discussions and help from Valérie Doya from Laboratoire de Physique de la Matière Condensée, Université de Nice Sophia Antipolis and CNRS, France. This work was supported by the Academy of Sciences of the Czech Republic under the Grant M100671202, and in part by the Czech Science Foundation under Project No. 14-35256S.

Author information



Corresponding author

Correspondence to Pavel Koška.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koška, P., Peterka, P. Numerical analysis of pump propagation and absorption in specially tailored double-clad rare-earth doped fiber. Opt Quant Electron 47, 3181–3191 (2015).

Download citation


  • Double-clad fibers
  • Finite element method
  • Beam propagation method
  • Fiber lasers