Advertisement

Optical and Quantum Electronics

, Volume 47, Issue 8, pp 3053–3063 | Cite as

Temperature behavior of unstrained (GaAs/AlGaAs) and strained (InGaAs/GaAs) quantum well bandgaps

  • Maria Herminia Balgos
  • Jessica Pauline AfallaEmail author
  • Sheryl Vizcara
  • Deborah Lumantas
  • Elmer Estacio
  • Arnel Salvador
  • Armando Somintac
Article
  • 298 Downloads

Abstract

The Cardona equation describing the temperature behavior of a bulk semiconductor is utilized to fit experimental photoluminescence data for both strained and unstrained quantum wells (QWs). To account for confinement energy and strain energy, the Cardona equation was modified to include the respective energy offsets. Results of modeling experimentally obtained PL of GaAs/AlGaAs QWs for the unstrained case, and PL of InGaAs/GaAs QWs for the strained case, shows that the modified Cardona equation gives excellent fits to the temperature behavior even for QW bandgaps. Thus, the equation is utilized to extract QW eigenenergies, which are verifiable using the usual effective mass approximation method in solving Schrodinger’s equation for a finite potential well.

Keywords

Semiconductor bandgap Quantum well Strain Photoluminescence 

Notes

Acknowledgments

This work was supported in parts by grants from DOST-GIA, UP-OVCRD and UP-OVPAA. The authors would like to thank J. Porquez, J. D. Vasquez and K. A. de las Alas for aid in data measurement and computation.

References

  1. Bajaj, K.K.: Excitons in Quantum Wells. In: Battacharya, P. (ed.) Properties of III–V Quantum Wells and Superlattices. INSPEC, London (1995)Google Scholar
  2. Botha, J.R., Leitch, A.W.R.: Temperature dependence of the photoluminescence properties and band gap energy of InxGa1–xAs/GaAs quantum wells. J. Electronic Mater. 29(12), 1362–1371 (2000)CrossRefADSGoogle Scholar
  3. Cardona, M., Meyer, T.A., Thewalt, M.L.W.: Temperature dependence of the energy gap of semiconductors in the low-temperature limit. Phys. Rev. Lett. 92(19), 6403–6407 (2004)CrossRefADSGoogle Scholar
  4. Chuang, S.L.: Physics of Optoelectronic Devices. John Wiley & Sons Inc, USA (1995)Google Scholar
  5. Kudo, M., Mishima, T.: Improved photoluminescence properties of highly strained InGaAs/GaAs quantum wells grown by molecular beam epitaxy. J. Appl. Phys. 78(3), 1685–1688 (1995)CrossRefADSGoogle Scholar
  6. Larkins, E.C., Harris Jr, J.S.: Molecular beam epitaxy of high quality GaAs and AlGaAs. In: Farrow, R.F.C. (ed.) Molecular Beam Epitaxy: Applications to Key Materials. Noyes Publications, USA (1995)Google Scholar
  7. Ledentsov, N.N., Tsukada, N., Ploog, K.: Carbon acceptor luminescence in type-I GaAs/AIAs ultrathin-layer superlattices. Appl. Phys. A 54, 261–264 (1992)CrossRefADSGoogle Scholar
  8. Mishra, U., Singh, J.: Semiconductor Device Physics and Design. Springer, Netherlands (2008)Google Scholar
  9. Paul, S., Roy, J.B., Basu, P.K.: Empirical expressions for the alloy composition and temperature dependence of the band gap and intrinsic carrier density of GaxIn1−xAs. J. Appl. Phys. 69(827), 827–829 (1991)CrossRefADSGoogle Scholar
  10. Sanguinetti, S., Guzzi, M., Gurioli, M.: Assessing structural and electronic properties of semiconductor nanostructures via photoluminescence. In: Lamberti, C. (ed.) Characterization of Semiconductor Heterostructures and Nanostructures. Elsevier, Oxford (2008)Google Scholar
  11. Singh, J.: Electronic and optoelectronic properties of semiconductor structures. Cambridge University Press, New York (2003)CrossRefGoogle Scholar
  12. Varshni, P.K.: Temperature dependence of the energy gap in semiconductors. Physica 34, 149–154 (1967)CrossRefADSGoogle Scholar
  13. Viña, L., Logothetides, S., Cardona, M.: Temperature dependence of the dielectric function of Ge. Phys. Rev. B 30, 1979 (1984)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Maria Herminia Balgos
    • 1
  • Jessica Pauline Afalla
    • 1
    Email author
  • Sheryl Vizcara
    • 1
  • Deborah Lumantas
    • 1
  • Elmer Estacio
    • 1
  • Arnel Salvador
    • 1
  • Armando Somintac
    • 1
  1. 1.Condensed Matter Physics Laboratory, National Institute of Physics, College of ScienceUniversity of the Philippines DilimanQuezon CityPhilippines

Personalised recommendations