Skip to main content
Log in

Comparison of the vectorial diffraction theory and Fraunhofer approximation method on diffractive images of Fresnel zone plates

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Both the vectorial diffraction theory and the Fraunhofer approximation method are used to calculate diffractive images. In those cases, 13.5 nm light is normally incident on Fresnel zone plates (FPZs) of which the focuses are all 0.3 mm. By investigating the calculations using the vectorial diffraction theory, the full width at half maximum (FWHM) intensities of the first-order diffraction along \(x\)-axis (\(\phi =0^{\circ }\)) are 17.2 and 8.7 nm for 2,000-zone and 10,000-zone FZPs, respectively. The comparison between two methods shows that FWHM errors along \(\phi =0^{\circ }\) are 4.2 and 22.3 %, and along \(\phi =45^{\circ }\) are 3.3 and 33.1 % for 2,000-zone and 10,000-zone FZPs, respectively. Furthermore, maximum intensity errors are 12.3 % for the 2,000-zone FZP and 33.5 % for the 10,000-zone FZP in our study cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson, E.H.: Specialized electron beam nanolithography for EUV and X-ray diffractive optics. IEEE J. Quantum Electron. 42, 27–35 (2006)

  • Cao, Q., Jahns, J.: Comprehensive focusing analysis of various Fresnel zone plates. J. Opt. Soc. Am. A 21, 561–571 (2004)

  • Chao, W., Harteneck, B.D., Liddle, J.A., Anderson, E.H., Attwood, D.T.: Soft X-ray microscopy at a spatial resolution better than 15nm. Nature 435, 1210–1213 (2005)

    Article  ADS  Google Scholar 

  • Choksi, N., Pickard, D.S., McCord, M., Pease, R.F.W., Shroff, Y., Chen, Y., Oldham, W., Markle, D.: Maskless extreme ultraviolet lithography. J. Vac. Sci. Technol. B 17, 3047–3051 (1999)

    Article  Google Scholar 

  • Ersoy, O.K.: Diffraction, Fourier Optics and Imaging. Wiley, Hoboken (2007)

    Book  Google Scholar 

  • Gil, D., Menon, R., Carter, D.J.D., Smith, H.I.: Lithographic patterning and confocal imaging with zone plates. J. Vac. Sci. Technol. B 18, 2881–2885 (2000)

    Article  Google Scholar 

  • Gil, D., Menon, R., Smith, H.I.: Fabrication of high-numerical-aperture phase zone plates with a single lithography exposure and no etching. J. Vac. Sci. Technol. B 21, 2956–2960 (2003)

    Article  Google Scholar 

  • Harvey, J.E.: Fourier treatment of nearfield scalar diffraction. Am. J. Phys. 47, 974–980 (1979)

    Article  ADS  Google Scholar 

  • Jackson, J.D.: Classical Electrodynamics, 3rd edn, p. 485. Wiley, Hoboken (1999a)

  • Jackson, J.D.: Classical Electrodynamics, 3rd edn, p. 491. Wiley, Hoboken (1999b)

  • Kipp, L., Skibowski, M., Johnson, R.L., Berndt, R., Adelung, R., Harm, S., Seemann, R.: Sharper images by focusing soft X-rays with photon sieves. Nature 414, 184–188 (2001)

    Article  ADS  Google Scholar 

  • Menon, R., Patel, A., Moon, E.E., Smith, H.I.: Alpha-prototype system for zone-plate-array lithography. J. Vac. Sci. Technol. B 22, 3032–3037 (2004)

  • Saleh, B.E.A., Teich, M.C.: Fundamentals of Photonics, 2nd edn, p. 116. Wiley, Hoboken (2007)

  • Sarkar, S.S., Sahoo, P.K., Solak, H.H., David, C., Van der Veen, J.F.: Fabrication of Fresnel zone plates by holography in the extreme ultraviolet region. J. Vac. Sci. Technol. B 26, 2160–2163 (2008)

    Article  Google Scholar 

  • Schmahl, G., Rudolph, D.: X-ray Microscopy, vol. 43. Springer, Berlin (1984)

    Google Scholar 

  • Schroer, C.G.: Focusing hard X rays to nanometer dimensions using Fresnel zone plates. Phys. Rev. B 74, 033405–033405-4 (2006)

    Article  ADS  Google Scholar 

  • Sheppard, C.J.R., Hrynevych, M.: Diffraction by a circular aperture: a generalization of Fresnel diffraction theory. J. Opt. Soc. Am. A 9, 274–281 (1992)

    Article  ADS  Google Scholar 

  • Smith, H.I.: A proposal for maskless, zone-plate-array nanolithography. J. Vac. Sci. Technol. B 14, 4318–4322 (1996)

    Article  Google Scholar 

  • Southwell, W.H.: Validity of the Fresnel approximation in the near field. J. Opt. Soc. Am. 71, 7–14 (1981)

    Article  ADS  Google Scholar 

  • Tsai, K.-Y., Chen, S.-Y., Pei, T.-H., Li, J.-H.: Fresnel zone plate manufacturability analysis for direct-write lithography by simulating focusing and patterning performance versus fabrication errors. Jpn. J. Appl. Phys. 49, 06GD08–06GD08-6 (2010)

    Google Scholar 

  • Vila-Comamala, J., Borrisé, X., Pérez-Murano, F., Campos, J., Ferrer, S.: Nanofabrication of Fresnel zone plate lenses for Xray optics. Microelectron. Eng. 83, 1355–1359 (2006)

  • Wang, Y., Yun, W., Jacobsen, C.: Achromatic Fresnel optics for wideband extreme-ultraviolet and X-ray imaging. Nature 424, 50–53 (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-Hang Pei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, TH., Tsai, KY. & Li, JH. Comparison of the vectorial diffraction theory and Fraunhofer approximation method on diffractive images of Fresnel zone plates. Opt Quant Electron 47, 1557–1567 (2015). https://doi.org/10.1007/s11082-014-9995-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-014-9995-y

Keywords

Navigation