Abstract
The effect of indium compositional grading on the performance of \(\hbox {p-GaN/i}\hbox {-}\hbox {In}_\mathrm{x}\hbox {Ga}_{1-\mathrm{x}}\hbox {N/GaN}\) solar cell has been investigated using TCAD Silvaco. An enhancement in efficiency of almost two times is found and this may be due to the increase in short circuit current density and open circuit voltage. This can be imputed to high carrier collection due to the reduction of band offset at the interface and high band bending in intrinsic layer. The optimized \(\hbox {GaN}/\hbox {In}_\mathrm{x}\hbox {Ga}_{1-\mathrm{x}}\hbox {N}\) solar cell with indium composition grading from 0 to 0.11, results fill factor of 77 %, short circuit current density of 0.99 mA/cm\(^{2}\) and open circuit voltage of 2.21 V under AM1.5G illumination.
Access this article
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Similar content being viewed by others
References
Brown, G.F., Ager, J.W., Walukiewicz, W., Wu, J.: Finite element simulations of compositionally graded InGaN solar cells. Sol. Energy Mater. Sol. Cells 94, 478–483 (2010)
Chang, J.Y., Liou, B.T., Lin, H.W., Shih, Y.H., Chang, S.H., Kuo, Y.K.: Numerical investigation on the enhanced carrier collection efficiency of Ga-face GaN/InGaN p-i-n solar cells with polarization compensation interlayers. Opt. Lett. 36, 3500–3502 (2011)
Chang, J., Kuo, Y.K.: Numerical study on the influence of piezoelectric polarization on the performance of p-on-n (0001)-face GaN/InGaN p-i-n solar cells. IEEE Electron. Device Lett. 32, 937–939 (2011)
Craven, M.D., Lim, S.H., Wu, F., Speck, J.S., Baars, S.P.D.: Structural characterization of nonpolar (1120) a-plane GaN thin films grown on (1102) r-plane sapphire. Appl. Phys. Lett. 81, 469–471 (2002)
Dahal, R., Pantha, B., Li, J., Lin, J.Y., Jiang, H.X.: InGaN/GaN multiple quantum well solar cells with long operating wavelengths. Appl. Phys. Lett. 94, 063505-1–063505-3 (2009)
Feng, S.W., Lai, C.M., Chen, C.H., Sun, W.C.: Theoretical simulation of the effect of the indium content, thickness and defect density of the i-layer on the performance of PIN InGaN single homojunction solar cells. J. Appl. Phys. 108, 093118 (2010)
Jani, O., Honsberg, C., Asghar, A., Nicol, D., Ferguson, I., Doolittle, A., Kurtz, S.: Characterization and analysis of InGaN photovoltaic devices. In: IEEE Photovoltaic Specialists Conference (2005)
Kuo, Y.-K., Lin, B.-C., Chang, J.-Y., Chang, Y.-A.: Numerical simulation of single-junction In0.5Ga0.5P solar cell with compositional grading configuration. IEEE Photonics Technol. Lett. 23, 822–824 (2011)
Kuo, Y.K., Lin, B.C., Chang, J.Y., Chen, F.M., Kuo, H.C.: Numerical study of (0001) face GaN/InGaN p–i–n solar cell with compositional grading configuration. IEEE Photonics Technol. Lett. 24, 1039–1041 (2012)
Levinshtein, M.E., Rumyantsev, S.L., Shur, M.S.: Properties of Advanced Semiconductor Materials. Willey, Chichester (2001)
Li, N.: Simulation and Analysis of GaN-Based Photoelectronics Devices. Dissertation (in Chinese). Institute of semiconductors, Chinese Academy of Sciences, Beijing (2005)
Mahala, P., Ray, A., Jani, O., Dhanavantri, C.: Theoretical study on the effect of graded InyGa1yN layer on \(\text{ p-GaN/In }_{y}\text{ Ga }_{1-y}\text{ N/n-GaN }\) p-i-n solar cell. Phys. Stat. Solidi A 210, 2656–2661 (2013)
Mnatsakanov, T.T., Levinshtein, M.E., Pmortseva, L.I., Yurkov, S.N., Simin, G.S., Khan, M.A.: Carrier mobility model for GaN. Solid State Electron. 47, 11–115 (2003)
More, J.J., Cosnard, M.Y.: Numerical solution of nonlinear equations. ACM Trans. Math. Softw. 5, 64–85 (1979)
Nawaz, M., Ahmad, A.: A TCAD-based modeling of GaN/InGaN/Si solar cells. Semicond. Sci. Technol. 27, 035019-1–035019-9 (2012)
Park, Y.S., Lee, H.S., Na, J.H., Kim, H.J., Si, S.M., Kim, H.-M., Kang, T.W., Oh, J.E.: Polarity determination for GaN/AlGaN/GaN heterostructures grown on (0001) sapphire by molecular beam epitaxy. J. Appl. Phys. 94, 800–802 (2003)
Sang, L., Liao, M., Ikeda, N., Koide, Y., Sumiya, M.: Enhanced performance of InGaN solar cell by using a super-thin AlN interlayer. Appl. Phys. Lett. 99, 161109-1–161109-3 (2011)
Sheu, J.K., Yang, C.C., Tu, S.J., Chang, K.H., Lee, M.L., Lai, W.C., Peng, L.C.: Demonstration of GaN-based solar cells with GaN/InGaN superlattice absorption layers. IEEE Electron. Device Lett. 30, 225–227 (2009)
Shim, J.P., Jeon, S.R., Lee, D.S.: Improved efficiency by using transparent contact layers in InGaN-based p–i–n solar cells. IEEE Electron. Device Lett. 31, 1140–1142 (2010)
Silvaco Data System Inc 2009 Atlas User Manual Ver. 24 5.15.31, www.silvaco.com
Vurgaftman, I., Meyer, J.R.: Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 94, 3675–3696 (2003)
Wu, J., Walukiewicz, W., Yu, K.M., Ager, J.W., Haller, E.E., Lu, H., Schaff, W.J.: Small band gap bowing in InGaN alloy. Appl. Phys. Lett. 80, 4741–4743 (2002)
Yamamoto, A., Islam, M.R., Kang, T.-T., Hashimoto, A.: Recent advances in InN-based solar cells: status and challenges in InGaN and InAlN solar cells. Phys. Status Solidi C 7, 1309–1316 (2010)
Acknowledgments
Authors wish to thank Prof. T. Harinarayana, Director-GERMI, Gandhinagar and Prof. Indrajit Mukhopadhyay, Head, Solar Research and Development Centre, PDPU, Gandhinagar.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mahala, P., Behura, S.K., Ray, A. et al. p-GaN/i-In\(_\mathrm{x }\)Ga1\(_\mathrm{x }\) N/n-GaN solar cell with indium compositional grading. Opt Quant Electron 47, 1117–1126 (2015). https://doi.org/10.1007/s11082-014-9968-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11082-014-9968-1