Skip to main content
Log in

Wavefront phase reconstruction approach of imaging interferometry based on shearography and the integrated unwrapping algorithm

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Imaging interferometry is a method used for high-precision inspection. It has a widespread application value in the semiconductor film detection and interferometric synthetic aperture radar. During the imaging interferometry process, the interferometric phase image, as the result of imaging process, can be low-quality because of under-sampling effect, mixed noise, etc. Thus, research groups around the world focus on optimal unwrapping methods as a way to reduce the harmful effect caused by under-sampling effect and mixed noise. By just one interferometric phase image, the result for this wavefront reconstruction method can be obtained. We present a optimal process based on shearography and the integrated unwrapping algorithm with a better accuracy parameter for the unwrapping phase formula. By just one interferometric phase image, the result for this wavefront reconstruction method can be obtained. At last, by verifying the simulation results and experiment data from different perspectives, the ability to improve data accuracy is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Basanta, B., Mohan, N.K., Kothiyal, M.P., Sirohi, R.S.: Use of spatial phase shifting technique in digital speckle pattern interferometry (DSPI) and digital shearography (DS). Opt. Express 14, 11598–11607 (2006)

    Article  ADS  Google Scholar 

  • Charles, J., Ashley, B., Rajpal, S.S.: Spatially multiplexed X-Y lateral shear interferometer with varying shears using holographic lens and spatial Fourier transform. Opt. Express 20, 15723–15733 (2012)

    Article  Google Scholar 

  • Chunhui, N., Xiaoling, W., Xianhui, M.: Multiple-image hiding based on interference principle. Optic. Quantum Electron. 43, 91–99 (2012)

    Article  Google Scholar 

  • Dengrong, Z., Fan, W., Zhaoquan, H., Lifan, Z., Yang, W.: Reconstruction of InSAR DEM using ERS-1/2 interferogram and SRTM data. Adv. Comput. Environ. Sci. Adv. Intell. Soft Comput. 142, 129–136 (2012)

    Article  Google Scholar 

  • Dennis, C.G., Mark, D.P.: Two-dimensional Phase Unwrapping: Theory, Algorithms, and Software. Wiley, New York (1998)

    MATH  Google Scholar 

  • Ehsan, A.A., Ahmad, D., Tavassoly, T.M.: Reconstructing the phase distribution of two Interfering wavefronts by analysis of their nonlocalized fringes with an iterative method. Opt. Express 19, 15976–15981 (2011)

    Article  Google Scholar 

  • Evans, C.J.: PV-a robust amplitude parameter for optical surface specification. Opt. Eng. 4, 1–8 (2009)

    Google Scholar 

  • Fengzhao, D., Feng, T., Xiangzhao, W., Peng, F., Osami, S.: Use of numerical orthogonal transformation for the Zernike analysis of lateral shearing interferograms. Opt. Express 20, 1530–1544 (2012)

    Article  Google Scholar 

  • Ferraro, P., Miccio, L., Grilli, S., Nicola, D.S., Finizio, A., Petrocellis, D.L.: Quantitative phase-contrast microscopy for analysis of live cells by using lateral shearing approach in digital holography. In: Digital Holography and Three Dimensional Imaging Vancouver. Canada 18 June (2007)

  • Ferraro, P., Alferi, D., De Nicola, S., De Petrocellis, L., Finizio, A., Pierattini, G.: Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction. Opt. Lett. 31, 1405–1407 (2006)

    Article  ADS  Google Scholar 

  • Ferraro, P., Del, C.C., Miccio, L., Grilli, S., De, N.S., Finizio, A., Coppola, G.: Phase map retrieval in digital holography: avoiding the undersampling effect by a lateral shear approach. Opt. Lett. 32, 2233–2235 (2007)

    Article  ADS  Google Scholar 

  • HuaWang, J., DaLin, L.: Improved median filter using minmax algorithm for image processing. Electron. Lett. 33, 1362–1363 (1997)

    Article  Google Scholar 

  • Hyug, G.R., Young, S.G., Joohyung, L., Ho, S.Y., Yun, W.L.: Correction of rotational inaccuracy in lateral shearing interferometry for freeform measurement. Opt. Express 21, 24799–24808 (2013)

    Article  Google Scholar 

  • Jing, F.W., Yu-Lung, L.L.: Robust detection scheme on noise and phase jump for phase maps of objects with height discontinuities-theory and experiment. Opt. Express 19, 3086–3105 (2011)

    Article  ADS  Google Scholar 

  • Jing, F.W., Yu-Lung, L.: Integration of robust filters and phase unwrapping algorithms for image reconstruction of objects containing height discontinuities. Opt. Express 20, 10896–10920 (2012)

    Article  Google Scholar 

  • Julio, C.E., Manuel, S., Juan, A.Q.: Noise robust linear dynamic system for phase unwrapping and smoothing. Opt. Express 19, 5126–5133 (2011)

    Article  Google Scholar 

  • Julio, C.E., Javier, V., Flores-Moreno, J.M., Antonio, Q.J.: Windowed phase unwrapping using a first-order dynamic system following iso-phase contours. Appl. Opt. 51, 7549–7553 (2012)

    Article  ADS  Google Scholar 

  • Lago, E.L., de la Fuente, R.: Amplitude and phase reconstruction by radial shearing interferometry. Appl. Opt. 47, 372–376 (2008)

    Article  ADS  Google Scholar 

  • Langis, G., Fatima, D.S.: Speckle noise reduction of airborne SAR images with symmetric Daubechies wavelets. In: Proceedings of SPIE 2759, Signal and Data Processing of, Small Targets. (1996). doi:10.1117/12.241168

  • Nazif, D., Hanan, H., Kristina, Š., Marc, T., Dalibor, V.: Undersampled digital holography. Opt. Express 17, 15842–15852 (2009)

    Article  Google Scholar 

  • Neal, B., Justin, B., Karl, K.: Two dimensional phase unwrapping for coherent imaging. In: Computational Optical Sensing and Imaging. June 23–27, ISBN: 978-1-55752-975-6. Joint Poster Session (2013)

  • Nesim, H., Richard, W.S.: Combined optimization of image-gathering optics and image-processing algorithm for edge detection. JOSA A 3, 1522–1536 (1986)

    Article  Google Scholar 

  • Pasquale, M., Maria, L., Maurizio, V., Paolo, A.N., Andrea, F., Melania, P., Pietro, F.: Quantitative phase maps denoising of long holographic sequences by using SPADEDH algorithm. Appl. Opt. 52, 1453–1460 (2013)

    Article  Google Scholar 

  • Quiroga, J.A., Bernabeu, E.: Phase-unwrapping algorithm for noisy phase-map processing. Appl. Opt. 33, 6725–6731 (1994)

    Article  ADS  Google Scholar 

  • Sanjit, K.D., Joonho, Y., Seung-Woo, K.: Determination of film thickness and surface profile using reflectometry and spectrally resolved phase shifting interferometry. Int. J. Precis. Eng. Manuf. 10, 5–10 (2009)

    Google Scholar 

  • Satoshi, T., Shusuke, N.: Phase unwrapping for noisy phase map using localized compensator. Appl. Opt. 51, 4984–4994 (2012)

    Article  Google Scholar 

  • Servin, M., Estrada, C.J., Quiroga, A.J., Mosiño, F.J., Cywiak, M.: Noise in phase shifting interferometry. Opt. Express. 17, 8789–8794 (2009)

    Article  ADS  Google Scholar 

  • Sungwoo, L., Yong, H.O., Chun, S.G.: Measurement of phases and amplitudes of AWG by fitting interference intensities. Opt. Quantum Electron. 45, 467–472 (2013)

    Article  Google Scholar 

  • Tieng, S.M., Lai, W.Z.: Digital phase shift holographic interferometry and its application in the experimental flow study. Opt. Quantum Electron. 23, 593–601 (1991)

    Article  Google Scholar 

  • Todd, M.V., Jason, D.S.: Optical phase unwrapping in the presence of branch points. Opt. Express 16, 6985–6998 (2008)

    Article  Google Scholar 

  • Valerii, P.A., Olga, V.T.: Theory of singular-phase reconstruction for an optical speckle field in the turbulent atmosphere. JOSA A 19, 345–355 (2002)

    Article  Google Scholar 

  • Wesley, K., Ron, W.: Comparison of interferogram noises in the ultraviolet and visible regions. Appl. Spectrosc. 46, 615–619 (1992)

    Article  Google Scholar 

  • Xiang, S.H., Zhou, L., Joseph, M.S.: Speckle noise reduction for optical coherence tomography. In: Proceedings of SPIE 3196, Optical and Imaging Techniques for Biomonitoring III, 79. (1998). doi:10.1117/12.297921

  • Xianjie, Z., Rongshan, F., Zhiyang, D., Bin, L.: Noise reduction in interferograms using the wavelet packet transform and wiener filtering. Geosci. Remote Sens. Lett. IEEE 5, 404–408 (2008)

    Article  Google Scholar 

  • Xinjian, S., Xiaoyu, S., Jiahang, L., Chang, L.W.: Obtaining digital elevation data in different terrain and physiognomy regions with spaceborne InSAR and its application analysis. Chin. Sci. Bull. 47, 868–873 (2002)

    Article  Google Scholar 

  • Yong, L., Dingfa, H., Yong, J.: Flexible error-reduction method for shape measurement by temporal phase unwrapping: phase averaging method. Appl. Opt. 51, 4945–4953 (2012)

    Article  ADS  Google Scholar 

  • Youssef, A., Abderrazak, L., Bouchaib, H., Abderraouf, R., Philippe, T., Meryane, S.: Structural, optical and electrical properties of ZnO: Al thin films for optoelectronic applications. Opt. Quantum Electron. (2013). doi:10.1007/s11082-013-9757-2

Download references

Acknowledgments

This work is supported by Surveying and Mapping Institute of Central South University. We thank them for their verification work of remote sensing image data in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Liyun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mingxing, L., Kai, Y. & Liyun, Z. Wavefront phase reconstruction approach of imaging interferometry based on shearography and the integrated unwrapping algorithm. Opt Quant Electron 47, 545–559 (2015). https://doi.org/10.1007/s11082-014-9931-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-014-9931-1

Keywords

Navigation