Optical and Quantum Electronics

, Volume 46, Issue 10, pp 1337–1344 | Cite as

Integrated quantum-dot laser devices: modulation stability with electro-optic modulator

  • M. WegertEmail author
  • D. Schwochert
  • E. Schöll
  • K. Lüdge


In view of integrated nanostructured devices we investigate the impact of an electro-optic modulator (EOM) section on the light dynamics of an adjacent quantum-dot (QD) laser. Using the Lang–Kobayashi model we analyze the nonlinear dynamics of the coupled system. We determine the effect of the detuning between the optical transition of the EOM and the QD laser and the influence of the material model of the EOM on the QD laser dynamics. The model of the EOM is based on Maxwell–Bloch equations with voltage dependent loss rates.


Electro-optic modulator Quantum dots Nonlinear dynamics 



We thank B. Lingnau for fruitful discussions. This work was supported by DFG in the framework of Sfb 787.


  1. Bimberg, D.: Quantum dots for lasers, amplifiers and computing. J. Phys. D 38(13), 2055–2058 (2005)CrossRefADSGoogle Scholar
  2. Breuer, S., Rossetti, M., Drzewietzki, L., Montrosset, I., Krakowski, M., Hopkinson, M., Elsäßer, W.: Dual-state absorber-photocurrent characteristics and bistability of two-section quantum-dot lasers. IEEE J. Sel. Topics Quantum Electron. 19(5), 1–9 (2013)Google Scholar
  3. Kim, J., Laemmlin, M., Meuer, C., Bimberg, D., Eisenstein, G.: Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifier. IEEE J. Quantum Electron. 45(3), 240–248 (2009)CrossRefADSGoogle Scholar
  4. Lang, R., Kobayashi, K.: External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron. 16, 347–355 (1980)Google Scholar
  5. Lingnau, B., Lüdge, K., Chow, W.W., Schöll, E.: Failure of the alpha factor in describing dynamical instabilities and chaos in quantum-dot lasers. Phys. Rev. E 86(6), 065201(R) (2012)Google Scholar
  6. Lüdge, K., Schöll, E.: Quantum-dot lasers—desynchronized nonlinear dynamics of electrons and holes. IEEE J. Quantum Electron. 45(11), 1396–1403 (2009)CrossRefGoogle Scholar
  7. Lüdge, K., Schöll, E., Viktorov, E.A., Erneux, T.: Analytic approach to modulation properties of quantum dot lasers. J. Appl. Phys. 109(9), 103112 (2011)CrossRefADSGoogle Scholar
  8. Majer, N., Lüdge, K., Schöll, E.: Cascading enables ultrafast gain recovery dynamics of quantum dot semiconductor optical amplifiers. Phys. Rev. B 82, 235301 (2010)Google Scholar
  9. Majer, N., Dommers-Völkel, S., Gomis-Bresco, J., Woggon, U., Lüdge, K., Schöll, E.: Impact of carrier-carrier scattering and carrier heating on pulse train dynamics of quantum dot semiconductor optical amplifiers. Appl. Phys. Lett. 99, 131102 (2011)Google Scholar
  10. Malins, D.B., Gomez-Iglesias, A., White, S.J., Sibbett, W., Miller, A., Rafailov, E.U.: Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 \(\mu \)m. Appl. Phys. Lett. 89(17), 171111 (2006)CrossRefADSGoogle Scholar
  11. Miller, D.A.B., Chemla, D.S., Damen, T.C., Gossard, A.C., Wiegmann, W., Wood, T.H., Burrus, B.A.: Bandedge electro-absorption in quantum well structures: the quantum confined stark effect. Phys. Rev. Lett. 53(22), 2173–2176 (1984)CrossRefADSGoogle Scholar
  12. Ngo, C.Y., Yoon, S.F., Loke, W.K., Cao, Q., Lim, D.R., Wong, V., Sim, Y.K., Chua, S.J.: Investigation of semiconductor quantum dots for waveguide electroabsorption modulator. Nanoscale Res. Lett. 3(12), 486–490 (2008)CrossRefADSGoogle Scholar
  13. Otto, C., Lüdge, K., Schöll, E.: Modeling quantum dot lasers with optical feedback: sensitivity of bifurcation scenarios. Phys. Stat. Sol. (b) 247(4), 829–845 (2010)Google Scholar
  14. Otto, C., Globisch, B., Lüdge, K., Schöll, E., Erneux, T.: Complex dynamics of semiconductor quantum dot lasers subject to delayed optical feedback. Int. J. Bif. Chaos 22(10), 1250246 (2012)CrossRefGoogle Scholar
  15. Pausch, J., Otto, C., Tylaite, E., Majer, N., Schöll, E., Lüdge, K.: Optically injected quantum dot lasers—impact of nonlinear carrier lifetimes on frequency locking dynamics. New J. Phys. 14, 053018 (2012)CrossRefADSGoogle Scholar
  16. Piwonski, T., Pulka, J., Huyet, G., Houlihan, J., Viktorov, E.A., Erneux, T.: Mixed state effects in waveguide electro-absorbers based on quantum dots. Appl. Phys. Lett. 99(17), 171103 (2011)CrossRefADSGoogle Scholar
  17. Qasaimeh, O., Kamath, K., Bhattacharya, P., Phillips, J.: Linear and quadratic electro-optic coefficients of self-organized \({\rm In}_{0.4}{\rm Ga}_{0.6}\)As/GaAs quantum dots. Appl. Phys. Lett. 72(11), 1275 (1998)CrossRefADSGoogle Scholar
  18. Rafailov, E.U., Cataluna, M.A., Sibbett, W.: Mode-locked quantum-dot lasers. Nat. Photon. 1(7), 395–401 (2007)CrossRefADSGoogle Scholar
  19. Viktorov, E.A., Cataluna, M.A., O’Faolain, L., Krauss, T.F., Sibbett, W., Rafailov, E.U., Mandel, P.: Dynamics of a two-state quantum dot laser with saturable absorber. Appl. Phys. Lett. 90(12), 121113 (2007)CrossRefADSGoogle Scholar
  20. Wegert, M., Majer, N., Lüdge, K., Dommers-Völkel, S., Gomis-Bresco, J., Knorr, A., Woggon, U., Schöll, E.: Nonlinear gain dynamics of quantum dot optical amplifiers. Semicond. Sci. Technol. 26, 014008 (2011)Google Scholar
  21. Yanchuk, S., Schneider, K.R., Recke, L.: Dynamics of two mutually coupled semiconductor lasers: instantaneous coupling limit. Phys. Rev. E 69(5), 056221 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • M. Wegert
    • 1
    Email author
  • D. Schwochert
    • 1
  • E. Schöll
    • 1
  • K. Lüdge
    • 1
  1. 1.Institut für Theoretische PhysikTU BerlinBerlinGermany

Personalised recommendations