Skip to main content
Log in

Photonic crystal logic gates: an overview

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Photonic crystals are considered as the suitable structures for creating all-optical processors because of low loss and high capability in guiding and controlling the light. This paper contains a comprehensive review of the principles, different types of designing methods and operational improvements of optical logic gates. The presented designs are investigated and categorized into three groups of all-optical photonic crystal logic gates based on interference waveguides, resonator structures and self-collimation phenomenon. Two former structures can be designed by utilizing linear or nonlinear materials while the later one performs just in linear regime and is independent from the input beam intensity. In general, the main purpose of previously accomplished studies has been presenting the designs to be resulted in broad operational bandwidth, low power consumption, high switching speed, high contrast ratio and excellent integration capability by trading off between different parameters. Also a comprehensive study has been done on the advantages and disadvantages of different design methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Andalib, P., Granpayeh, N.: All-optical ultra-compact photonic crystal controllable logic gate based on nonlinear ring resonator. In: 5th IEEE International Conference on Group IV Photonics, pp. 170–172 (2008a)

  • Andalib, P., Granpayeh, N.: All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators. J. Opt. Soc. Am. B 26, 10–16 (2008b)

    Article  ADS  Google Scholar 

  • Andalib, P., Granpayeh, N.: All-optical ultra-compact photonic crystal NOR gate based on nonlinear ring resonators. J. Opt. A Pure Appl. Opt. 11, 085203–085210 (2009)

  • Ayre, M., Karle, T.J., Davies, T., Krauss, T.F.: Experimental verification of numerically optimized photonic crystal injector, Y-splitter, and bend. IEEE J. Sel. Areas Commun. 23, 1390–1395 (2005)

    Article  Google Scholar 

  • Bai, J., et al.: Photonic NOT and NOR gates based on a single compact photonic crystal ring resonator. Appl. Opt. 48, 6923–6927 (2009)

    Article  ADS  Google Scholar 

  • Bykov, V.P.: Spontaneous emission in a periodic structure. J. Exp. Theor. Phys. 35, 505–513 (1972)

  • Bykov, V.P.: Spontaneous emission from a medium with a band spectrum. Sov. J. Quantum Electron. 4, 861–871 (1975)

    Article  ADS  Google Scholar 

  • Chen, C.-C., Chien, H.-D., Luan, P.-G.: Photonic crystal beam splitters. Appl. Opt. 43, 6187–6190 (2004)

    Article  ADS  Google Scholar 

  • Cuesta-Soto, F., et al.: All-optical switching structure based on a photonic crystal directional coupler. Opt. Express 12, 161–167 (2004)

    Article  ADS  Google Scholar 

  • Cuesta-Soto, F., García-Baños, B., Martí, J.: Compensating intermodal dispersion in photonic crystal directional couplers. Opt. Lett. 30, 3156–3158 (2005)

    Article  ADS  Google Scholar 

  • Danaie, M., Kaatuzian, H.: Design and simulation of an all-optical photonic crystal AND gate using nonlinear Kerr effect. Opt. Quantum Electron. 44, 27–34 (2011)

    Article  Google Scholar 

  • Dzedolik, I., Lapayeva, S., Rubass, a: All-optical logic gates based on nonlinear dielectric films. Ukr. J. Phys. Opt. 9, 187–196 (2008)

    Article  Google Scholar 

  • Fasihi, K., Mohammadnejad, S.: Highly efficient channel-drop filter with a coupled cavity-based wavelength-selective reflection feedback. Opt. Express 17, 8983–8997 (2009a)

    Article  ADS  Google Scholar 

  • Fasihi, K., Mohammadnejad, S.: Orthogonal hybrid waveguides: an approach to low crosstalk and wideband photonic crystal intersections design. J. Light. Technol. 27, 799–805 (2009b)

    Article  ADS  Google Scholar 

  • Frandsen, L.H., et al.: Ultralow-loss 3-dB photonic crystal waveguide splitter. Opt. Lett. 29, 1623–1625 (2004)

    Article  ADS  Google Scholar 

  • Goh, J., Fushman, I., Englund, D., Vukovic, J.: Genetic optimization of photonic bandgap structures. Opt. Express 15, 8218–8230 (2007)

    Article  ADS  Google Scholar 

  • Gnauck, A.H., et al.: \(25 \times 40\)-Gb/s copolarized DPSK transmission over \(12 \times 100\)-km NZDF with 50-GHz channel spacing. IEEE Photonics Technol. Lett. 15, 467–469 (2003a)

  • Gnauck, A.H., Chandrasekhar, S., Leuthold, J., Stulz, L.: Demonstration of 42.7-Gb/s DPSK receiver with 45 photons/bit sensitivity. IEEE Photonics Technol. Lett. 15, 99–101 (2003b)

  • Hernández, S., et al.: Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition. J. Appl. Phys. 103, 064309–064315 (2008)

    Article  ADS  MATH  Google Scholar 

  • Hou, J., Gao, D., Wu, H., Zhou, Z.: Polarization insensitive self-collimation waveguide in square lattice annular photonic crystals. Opt. Commun. 282, 3172–3176 (2009)

    Article  ADS  Google Scholar 

  • Isfahani, B.M., Ahamdi Tameh, T., Granpayeh, N., Maleki Javan, A.R.: All-optical NOR gate based on nonlinear photonic crystal microring resonators. J. Opt. Soc. Am. B 26, 1097–1102 (2009)

    Article  ADS  Google Scholar 

  • Ishizaka, Y., Kawaguchi, Y., Saitoh, K., Koshiba, M.: Design of optical XOR, XNOR, NAND, and OR logic gates based on multi-mode interference waveguides for binary-phase-shift-keyed signal. J. Light. Technol. 29, 2836–2846 (2011a)

    Article  ADS  Google Scholar 

  • Ishizaka, Y., Kawaguchi, Y., Saitoh, K., Koshiba, M.: Design of ultra compact all-optical XOR and AND logic gates with low power consumption. Opt. Commun. 284, 3528–3533 (2011b)

    Article  ADS  Google Scholar 

  • Jiang, J., Qiang, Z., Xu, X., Chen, X.: Analysis of photonic logic gates based on single hexagonal-lattice photonic crystal ring resonator. J. Nanophotonics 5, 053519–053527 (2011)

    Article  ADS  Google Scholar 

  • Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light, 2nd edn. Princeton University Press, Princeton (2008)

    Google Scholar 

  • John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    Article  ADS  Google Scholar 

  • Kabilan, A.P., Christina, X.S., Caroline, P.E.: Realization of optical logic gates using photonic crystal. In: International Conference on Optic Photonics, pp. 3–6 (2009)

  • Kabilan, A.P., Christina, X.S., Caroline, P.E.: Photonic crystal based all optical OR and XOR logic gates. In: Second International Conference on Computing, Communication and Networking Technologies, pp. 0–3 (2010)

  • Kawashita, Y., Haraguchi, M., Okamoto, H., Fujii, M., Fukui, M.: Optical amplifier using nonlinear nanodefect cavity in photonic crystal. Jpn. J. Appl. Phys. 45, 7724–7728 (2006)

    Article  ADS  Google Scholar 

  • Kim, J.H., et al.: All-optical XOR gate using semiconductor optical amplifiers without additional input beam. IEEE Photonics Technol. Lett. 14, 1436–1438 (2002)

    Article  ADS  Google Scholar 

  • Koos, C., Jacome, L., Poulton, C., Leuthold, J., Freude, W.: Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt. Express 15, 5976–5990 (2007)

    Article  ADS  Google Scholar 

  • Kosaka, H., et al.: Superprism phenomena in photonic crystals. Phys. Rev. B 58, R10096–R10099 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  • Kosaka, H., et al.: Self-collimating phenomena in photonic crystals. Appl. Phys. Lett. 74, 1212–1214 (1999)

    Article  ADS  Google Scholar 

  • Kumar, V.D., Srinivas, T., Selvarajan, A.: Investigation of ring resonators in photonic crystal circuits. Photonics Nanostruct. Fundam. Appl. 2, 199–206 (2004)

    Article  ADS  Google Scholar 

  • Lee, K.-Y., et al.: The designs of XOR logic gates based on photonic crystals. In: Asia Pacific Optical Communications. International Society for Optics and Photonics, pp. 71353Y-1–71353Y-8 (2008)

  • Lin, P., Hsu, F.: All optical NOR gates implemented by 2-D photonic crystals. In: 14th International Symposium on Electrets (ISE), pp. 193–194 (2011)

  • Li, X., Xu, Y.: Optical sensing by using photonic crystal based Mach–Zehnder interferometer. Opt. Commun. 301–302, 7–11 (2013)

    Article  Google Scholar 

  • Liu, Q., Ouyang, Z., Wu, C.J., Liu, C.P., Wang, J.C.: All-optical half adder based on cross structures in two-dimensional photonic crystals. Opt. Express 16, 18992–19000 (2008)

    Article  ADS  Google Scholar 

  • Liu, W., Yang, D., Shen, G., Tian, H., Ji, Y.: Design of ultra compact all-optical XOR, XNOR, NAND and OR gates using photonic crystal multi-mode interference waveguides. Opt. Laser Technol. 50, 55–64 (2013)

    Article  ADS  Google Scholar 

  • Malureanu, R., Frandsen, L.H.: A statistical approach for measuring dislocations in 2D photonic crystals. In: International Conference on Nanoscience and Nanotechnology, pp. 200–202 (2008)

  • Meindl, J.D.: Low power microelectronics: retrospect and prospect. Proc. IEEE 83, 619–635 (1995)

    Article  Google Scholar 

  • Mitsugi, S., et al.: Resonant tunneling wavelength filters with high Q and high transmittance based on photonic crystal slabs. In: 16th Annual Meeting IEEE Lasers Electro-Optics Soc (LEOS), vol. 1, pp. 214–215 (2003)

  • Nguyen, H.C., Hashimoto, S., Shinkawa, M., Baba, T.: Compact and fast photonic crystal silicon optical modulators. Opt. Express 20, 22465–22474 (2012)

    Article  ADS  Google Scholar 

  • Notomi, M., et al.: Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Opt. Express 13, 2678–2687 (2005)

    Article  ADS  Google Scholar 

  • Notomi, M., Shinya, A., Mitsugi, S., Kuramochi, E., Ryu, H.-Y.: Waveguides, resonators and their coupled elements in photonic crystal slabs. Opt. Express 12, 1551–1561 (2004)

    Article  ADS  Google Scholar 

  • Passaro, V.M.N.: Modeling of Photonic Devices, vol. 414. Nova Science Publishers Inc, New York (2009)

    Google Scholar 

  • Rosa, L., Saitoh, K., Kakihara, K., Koshiba, M.: Genetic-algorithm assisted design of C-band CROW-miniaturized PCW interleaver. J. Light. Technol. 27, 2678–2687 (2009)

    Article  ADS  Google Scholar 

  • Rostami, A., Nazari, F., Banaei, H.A., Bahrami, A.: A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photonics Nanostruct. Fundam. Appl. 8, 14–22 (2010)

    Article  ADS  Google Scholar 

  • Sakoda, K.: Optical properties of photonic crystals. Ser. Opt. Sci. 80, 99–123 (2005)

  • Shinya, A., et al.: Ultrasmall resonant tunneling/dropping devices in 2D photonic crystal slabs. In: Optoelectronics Integrated Devices VII (International Society for Optics and Photonics) (2005). doi:10.1117/12.592631

  • Shinya, A., et al.: All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab. Opt. Express 14, 1230–1235 (2006)

    Article  ADS  Google Scholar 

  • Sibilia, C., Benzson, T., Marciniak, M., Szoplic, T.: Photonic Crystals: Physics and Technology, vol. 289. Springer, Italia (2008)

    Book  Google Scholar 

  • Sukhoivanov, I., Guryev, I.: Photonic Crystal: Physics and Practical Modelling, vol. 242. Springer, Berlin (2009)

    Book  Google Scholar 

  • Vcsels, P.C., et al.: Beam properties of visible proton-implanted photonic crystal VCESLs. IEEE Sel. Topics Quantum Electron. 17, 1648–1655 (2011)

    Article  MATH  Google Scholar 

  • Vujic, D., John, S.: Pulse reshaping in photonic crystal waveguides and microcavities with Kerr nonlinearity: critical issues for all-optical switching. Phys. Rev. A 72, 013807–013817 (2005)

    Article  ADS  Google Scholar 

  • Wang, J., Sun, J., Sun, Q.: Experimental observation of a 1.5 \(\upmu \text{ m }\) band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation. Opt. Lett. 31, 1711–1713 (2006)

    Article  ADS  Google Scholar 

  • Wang, J., Sun, J., Sun, Q.: Proposal for all-optical switchable OR/XOR logic gates using sum-frequency generation. IEEE Photonics Technol. Lett. 19, 541–543 (2007a)

    Article  ADS  Google Scholar 

  • Wang, J., Sun, J., Sun, Q.: Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation. Opt. Express 15, 1690–1699 (2007b)

    Article  ADS  Google Scholar 

  • Wang, J., Sun, J., Zhang, X., Huang, D., Fejer, M.: PPLN-based all-optical three-input 20/40 Gb/s AND gate for NRZ/RZ Signals and XOR gate for NRZ-DPSK/RZ-DPSK signals. In: Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. OMV3 (2008a)

  • Wang, J., et al.: PPLN-based flexible optical logic and gate. IEEE Photonics Technol. Lett. 20, 211–213 (2008b)

    Article  ADS  Google Scholar 

  • Wilson, R., Karle, T.J., Moerman, I., Krauss, T.F.: Efficient photonic crystal Y-junctions. J. Opt. A Pure Appl. Opt. 5, S76–S80 (2003)

    Article  ADS  Google Scholar 

  • Witzens, J., Lon, M., Scherer, A.: Self-collimation in planar photonic crystals. IEEE Sel. Topics Quantum Electron. 8, 1246–1257 (2002)

    Article  Google Scholar 

  • Wu, C.J., Liu, C.P., Ouyang, Z.: Compact and low-power optical logic NOT gate based on photonic crystal waveguides without optical amplifiers and nonlinear materials. Appl. Opt. 51, 680–685 (2012)

    Article  ADS  Google Scholar 

  • Xavier, S., Arunachalam, K.: Compact design of all-optical logic gates based on self-collimation phenomenon in two-dimensional photonic crystal. Opt. Eng. 51, 045201–045206 (2012)

    Article  ADS  Google Scholar 

  • Xavier, S., Arunachalam, K., Caroline, E., Johnson, W.: Design of two-dimensional photonic crystal-based all-optical binary adder. Opt. Eng. 52, 025201–025207 (2013)

    Article  ADS  Google Scholar 

  • Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  ADS  Google Scholar 

  • Yablonovitch, E.: Photonic band-gap structures. J. Opt. Soc. Am. B 10, 283–295 (1993)

    Article  ADS  Google Scholar 

  • Yan, M., et al.: Adaptive blind equalization for coherent optical BPSK system. In: 36th European Conference and Exhibition on Optical Communication. IEEE (2010). doi:10.1109/ECOC.2010.5621449

  • Yu, X., Fan, S.: Bends and splitters for self-collimated beams in photonic crystals. Appl. Phys. Lett. 83, 3251–3253 (2003)

    Article  ADS  Google Scholar 

  • Zhang, X., Wang, Y., Sun, J., Liu, D., Huang, D.: All-optical AND gate at 10 Gbit/s based on cascaded single-port-couple SOAs. Opt. Express 12, 361–366 (2004)

    Article  ADS  Google Scholar 

  • Zhang, Y., Zhang, Y., Li, B.: Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals. Opt. Express 15, 9287–9292 (2007)

    Article  ADS  Google Scholar 

  • Zhu, Z., Ye, W., Ji, J., Yuan, X., Zen, C.: High-contrast light-by-light switching and AND gate based on nonlinear photonic crystals. Opt. Express 14, 1783–1788 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aryan Salmanpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salmanpour, A., Mohammadnejad, S. & Bahrami, A. Photonic crystal logic gates: an overview. Opt Quant Electron 47, 2249–2275 (2015). https://doi.org/10.1007/s11082-014-0102-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-014-0102-1

Keywords

Navigation