Skip to main content
Log in

Analysis of carrier heating effects in quantum well semiconductor optical amplifiers considering holes’ non-parabolic density of states

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper studies effects of carrier heating on the amplified pico-second Gaussian pulse propagation in a quantum well semiconductor optical amplifier (QW-SOA) taking into account the holes’ non-parabolic density of states. In the analysis we have also considered the discontinuous distribution of energy band structure and the coupling between heavy hole, light hole and spin-orbit spilt-off bands. It has been found that at higher temperatures the wavelength at which the peak value of modal gain occurs decreases (small blue shift). The pulse amplification performances of QW-SOAs for two unchirped Gaussian input pulses having the peak power values of 10 and 100 mw have been investigated both in the presence and absence of the carrier heating effects. It has been found that carrier heating effects broaden the amplified output signal pulse width and lower the peak value of the amplified output pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal, G.P., Olsson, N.A.: Amplification and compression of weak picosecond optical pulses by using semiconductor laser amplifiers. Opt. Lett. 14, 500–502 (1989)

  • Chuang, S.L.: Physics of Optoelectronic Devices. Wiley, New York (1995)

    Google Scholar 

  • Chang, C., Chuang, S.: Modeling of strained quantum-well lasers with spin-orbit coupling. IEEE J. Sel. Top. Quantum Electron. 1, 218–229 (1995)

  • Chao, C.Y.P., Chuang, S.L.: Spin-orbit-coupling effects on the valence-hand structure of strained semiconductor quantum wells. Phys. Rev. E 46, 4110–4122 (1992)

  • Chuang, S.L.: Efficient band-structure calculations of strained quantum wells. Phys. Rev. B 43, 9649–9661 (1991)

  • Connelly, M.J.: Wideband semiconductor optical amplifier steady-state numerical model. IEEE J. Quantum Electron. 37, 439–447 (2001)

  • Dailey, J.M., Koch, T.L.: Impact of carrier heating on SOA dynamics for wavelength conversion. In: Lasers and Electro-Optics Society, 19th Annual Meeting of the IEEE, p. 156 (2006)

  • Dailey, J.M., Koch, T.L.: Impact of carrier heating on SOA transmission dynamics for wavelength conversion. IEEE Photon. Technol. Lett. 19, 1078–1080 (2007)

  • Dailey, J., Koch, T.: Simple rules for optimizing asymmetries in SOA-based Mach–Zehnder wavelength converters. J. Lightwave Technol. 27, 1480–1488 (2009)

  • Ghafouri-Shiraz, H., Tan, P.W., Aruga, T.: Picosecond pulse amplification in Tapered–Waveguide laser-diode amplifiers. IEEE. Sel. Top. Quantum Electron. 3, 210–217 (1997)

  • Ghafouri-Shiraz, H., Tan, P.W.: Study of a novel laser diode amplifier structure. Semicond. Sci. Technol. 11, 1443 (1996)

    Article  ADS  MATH  Google Scholar 

  • Huang, X., Zhang, Z., Qin, C., Yu, Y., Zhang, X.: Optimized quantum-well semiconductor optical amplifier for RZ-DPSK signal regeneration. IEEE J. Quantum Electron. 47, 819–826 (2011)

  • Juodawlkis, P.W., Plant, J.J., Loh, W., Missaggia, L.J., Jensen, K.E., O’Donnell, F.J.: Packaged 1.5-\(\upmu \)m quantum-well SOA with 0.8-w output power and 5.5-dB noise figure. IEEE Photon. Technol. Lett. 21, 1208–1210 (2009)

  • Jongwoon, P., Xun, L., Ping, H.W.: Gain clamping in semiconductor optical amplifiers with second-order index-coupled DFB grating. IEEE J. Quantum Electron. 41, 366–375 (2005)

  • Kendall, A.: An Introduction To Numerical Analysis, 2nd edn. Wiley, New York (1989)

    MATH  Google Scholar 

  • Mørk, J., Mark, J., Seltzer, C.P.: Carrier heating in InGaAsP laser amplifiers due to two-photon absorption. Appl. Phys. Lett. 64, 2206–2208 (1994)

  • Mørk, J., Mecozzi, A., Hultgren, C.: Spectral effects in short pulse pump-probe measurements. Appl. Phys. Lett. 68, 449–451 (1996)

  • Mørk, J., Mecozzi, A.: Theory of the ultrafast optical response of active semiconductor waveguides. Opt. Soc. Am. B. 13, 1803–1816 (1996)

  • O’Reilly, E.P., Adams, A.R.: Band-structure engineering in strained semiconductor lasers. IEEE Quantum Electron. 30, 366–379 (1994)

  • Qasaimeh, O.: Analytical model for cross-gain modulation and crosstalk in quantum-well semiconductor optical amplifiers. Lightw. Technol. 26, 449–456 (2008)

  • Qin, C., Huang, X., Zhang, X.: Theoretical investigation on gain recovery dynamics in step quantum well semiconductor optical amplifiers. IEEE J. Quantum Electron. 29, 607–613 (2012)

  • Qin, C., Huang, X., Zhang, X.: Gain recovery acceleration by enhancing differential gain in quantum well semiconductor optical amplifiers. IEEE Quantum Electron. 47, 1443–1450 (2011)

  • Sun, X., Vogiatzis, N., Rorison, J.M.: Theoretical study on Dilute Nitride 1.3 \(\upmu \)m Quantum Well semiconductor optical amplifiers: incorporation of N compositional fluctuations. IEEE J. Quantum Electron. 49, 811–820 (2013)

  • Sugawara, M., Okazalu, N., Fujii, T., Yamazalu, S.: Conduction-band and valence-band structures in strained InGaAs/InP quantum wells on (001) InP substrates. Phys. Rev. E 48, 8102–8118 (1993)

  • Tolstikhin, V.I., Willander, M.: Theory of hot carrier effects on nonlinear gain in GaAs-GaAlAs lasers and amplifiers. IEEE Quantum Electron. 26, 1989 (1990)

    Google Scholar 

  • Van de Walle, C.G.: Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 39, 1871–1883 (1989)

  • Xu, J., Ding, Y., Peucheret, C., Xue, W., Seoane, J., Zsigri, B., Jeppesen, P., Mørk, J.: Simple and efficient methods for the accurate evaluation of patterning effects in ultrafast photonic switches. Opt. Exp. 19, 155–161 (2011)

  • Zhou, E., Öhman, F., Cheng, C., Zhang, X., Hong, W., Mørk J., Huang D.: Reduction of patterning effects in SOA-based wavelength converters by combining cross-gain and cross-absorption modulation. Opt. Exp. 16, 21522–21528 (2008)

  • Zory Jr, S.: Quantum Well Lasers. Academic press, San Diego (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ghafouri-Shiraz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, M., Ghafouri-Shiraz, H. Analysis of carrier heating effects in quantum well semiconductor optical amplifiers considering holes’ non-parabolic density of states. Opt Quant Electron 47, 1847–1858 (2015). https://doi.org/10.1007/s11082-014-0049-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-014-0049-2

Keywords

Navigation