Skip to main content
Log in

Low-frequency photonic bands in metallic lattices: a tight-binding description

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Low-frequency photonic band structures in two-dimensional metallic lattices are investigated through both numerical and tight-binding approaches. The metallic structures, displaying respectively four and six fold rotational symmetries, are constructed upon different sets of adjustable structure units, allowing probing the contribution of different structure configurations to the band formation. We show that the low-frequency band structures can be described in the tight-binding framework, and analyzed in terms of local resonance modes and their mutual correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ashcroft, N.W., Mermin, N.D.: Solid State Physics, Chap. 10, pp. 175–190. Saunders College, Philadelphia (1976)

  • Bayindir, M., Temelkuran, B., Ozbay, E.: Tight-binding description of the coupled defect modes in three-dimensional photonic crystal. Phys. Rev. Lett. 84, 2140–2143 (2000)

    Article  ADS  Google Scholar 

  • Belousov, S., Bogdanova, M., Deinega, A., Eyderman, S., Valuev, I., Lozovik, Y., Polischuk, I., Potapkin, B., Ramamurthi, B., Deng, T., Midha, V.: Using metallic photonic crystals as visible light sources. Phys. Rev. B 86, 174201 (2012)

    Article  ADS  Google Scholar 

  • Chan, D.L.C., Soljačić, M., Joannopoulos, J.D.: Thermal emission and design in 2D-periodic metallic photonic crystal slabs. Optics Express 14, 8785–8796 (2006)

    Article  ADS  Google Scholar 

  • Ebbesen, T.W., Lezec, H.J., Ghaemi, H.F., Thio, T., Wolff, P.A.: Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)

    Article  ADS  Google Scholar 

  • Fleming, J.G., Lin, S.Y., El-Kady, I., Biswas, R., Ho, K.M.: All-metallic three-dimensional photonic crystals with a large infrared bandgap. Nature 417, 52–55 (2002)

    Article  ADS  Google Scholar 

  • Guida, G., Maystre, D., Tayeb, G., Vincent, P.: Mean-field theory of two-dimensional metallic photonic crystals. J. Opt. Soc. Am. B 15, 2308–2315 (1998)

    Article  ADS  Google Scholar 

  • Guida, G.: Numerical study of band gaps generated by randomly perturbed bidimensional metallic cubic photonic crystals. Optics Commun. 156, 294–296 (1998)

    Article  ADS  Google Scholar 

  • Han, S.E., Stein, A., Norris, D.J.: Tailoring self-assembled metallic photonic crystals for modified thermal emission. Phys. Rev. Lett. 99, 053906 (2007)

    Article  ADS  Google Scholar 

  • Hossain, M.M., Chen, G., Jia, B., Wang, X.-H., Gu, M.: Optimization of enhanced absorption in 3D-woodpile metallic photonic crystals. Optics Express 18, 9048–9054 (2010)

    Article  ADS  Google Scholar 

  • Kim, K., Stroud, D.: Photonic band structures of periodic arrays of pores in a metallic host: tight-binding beyond the quasistatic approximation. Optics Express 21, 19834–19849 (2013)

    Article  ADS  Google Scholar 

  • Lidorikis, E., Sigalas, M.M., Economou, E.N., Soukoulis, C.M.: Tight-binding parametrization for photonic band gap materials. Phys. Rev. Lett. 81, 1405–1408 (1998)

    Article  ADS  Google Scholar 

  • Lin, S.Y., Fleming, J.G., Li, Z.Y., El-Kady, I., Biswas, R., Ho, K.M.: Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal. J. Opt. Soc. Am. B 20, 1538–1541 (2003)

    Article  ADS  Google Scholar 

  • Modinos, A., Yannopapas, V., Stefanou, N.: Scattering of electromagnetic waves by nearly periodic structures. Phys. Rev. B 61, 8099–8107 (2000)

    Article  ADS  Google Scholar 

  • Moroz, A.: Three-dimensional complete photonic-band-gap structures in the visible. Phys. Rev. Lett. 83, 5274–5277 (1999)

    Article  ADS  Google Scholar 

  • Pendry, J.B.: Photonic band structures. J. Mod. Opt. 41, 209–229 (1994)

    Article  ADS  Google Scholar 

  • Pendry, J.B., Holden, A.J., Stewart, W.J., Youngs, I.: Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996)

    Article  ADS  Google Scholar 

  • Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Low frequency plasmons in thin-wire structures. J. Phys. Condens. Matter 10, 4785–4809 (1998)

    Article  ADS  Google Scholar 

  • Sievenpiper, D.F., Sickmiller, M.E., Yablonovitch, E.: 3D wire mesh photonic crystals. Phys. Rev. Lett. 76, 2480–2483 (1996)

    Article  ADS  Google Scholar 

  • Stefanou, N., Modinos, A.: Impurity bands in photonic insulators. Phys. Rev. B 57, 12127–12133 (1998)

    Article  ADS  Google Scholar 

  • Temelkuran, B., Ozbay, E., Sigalas, M., Tuttle, G., Soukoulis, C.M., Ho, K.M.: Reflection properties of metallic photonic crystals. Appl. Phys. A 66, 363–365 (1998)

    Article  ADS  Google Scholar 

  • Wan, J.T.K., Chan, C.T.: Thermal emission by metallic photonic crystal slabs. Appl. Phys. Lett. 89, 041915 (2006)

    Article  ADS  Google Scholar 

  • Wang, K.: Light localization in photonic band gaps of quasiperiodic dielectric structures. Phys. Rev. B 82, 045119 (2010)

    Article  ADS  Google Scholar 

  • Wang, K.: Light wave states in quasiperiodic metallic structures. Phys. Rev. B 86, 235110 (2012)

    Article  ADS  Google Scholar 

  • Withayachumnankul, W., Abbott, D.: Metamaterials in the Terahertz regime. IEEE Photonics J 1, 99–118 (2009)

    Article  Google Scholar 

  • Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  ADS  Google Scholar 

  • Yannopapas, V.: Thermal emission from three-dimensional arrays of gold nanoparticles. Phys. Rev. B 73, 113108 (2006)

    Article  ADS  Google Scholar 

  • Yannopapas, V.: Negative refractive index in the near-UV from Au-coated CuCl nanoparticle superlattices. Phys. Stat. Sol. (RRL) 1, 208–210 (2007)

    Article  Google Scholar 

  • Yannopapas, V.: Non-reciprocal photonic bands in a two-dimensional holey metal filled with a magnetoelectric material. J. Opt. 14, 085105 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  • Yariv, A., Xu, Y., Lee, R.K., Scherer, A.: Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett. 24, 711–713 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K. Low-frequency photonic bands in metallic lattices: a tight-binding description. Opt Quant Electron 47, 3131–3144 (2015). https://doi.org/10.1007/s11082-014-0046-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-014-0046-5

Keywords

Navigation