Skip to main content
Log in

Inverse-rib hybrid plasmonic waveguide for low-loss deep sub-wavelength surface plasmon polariton propagation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We propose an inverse-rib plasmonic waveguide which is more realistic and easy-to-fabricate to provide a more realistic image of previously proposed waveguides and simplified fabrication processes. It is shown that despite major changes in the structure, this waveguide provides optical properties comparable to previously proposed ones in \(\uplambda =1.55\,\upmu \hbox {m}\) telecommunication wavelength. Characteristic modal area of the designed waveguide reaches below \(\uplambda ^2/3600\) with propagation lengths on the order of several tens of microns. It also offers high Purcell factor ranging from 75 to 145 with figure of merits around \(9\times 10^3\) to \(1.7\times 10^3\). Also studied is the compensation of gain in InGaAsP materials, for which critical gains from 150 to 700 \(\hbox {cm}^{-1}\) are calculated for loss-less waveguiding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alam, M.Z., Meier, J., Aitchison, J.S., Mojahedi, M.: Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends. Opt. Express 18(12), 12971–12979 (2010)

    Article  ADS  Google Scholar 

  • Alpert, C.J., Devgan, A., Kashyap, C.V.: RC delay metrics for performance optimization. Comput Aided Des. Integr. Circuits Syst. IEEE Trans. 20(5), 571–582 (2001)

  • Atwater, H.A.: The promise of plasmonics. Sci. Am. 296(4), 56–62 (2007)

    Article  Google Scholar 

  • Benisty, H., Besbes, M.: Plasmonic inverse rib waveguiding for tight confinement and smooth interface definition. J. Appl. Phys. 108(6), 063108:1–063108:6 (2010)

    Article  Google Scholar 

  • Benisty, H., Besbes, M.: Confinement and optical properties of the plasmonic inverse-rib waveguide. JOSA B 29(4), 818–826 (2012)

    Article  ADS  Google Scholar 

  • Berini, P.: Figures of merit for surface plasmon waveguides. Opt. Express 14(26), 13030–13042 (2006)

    Article  ADS  Google Scholar 

  • Bian, Y., Gong, Q.: Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes. Opt. Express 21(20), 23907–23920 (2013)

    Article  ADS  Google Scholar 

  • Bian, Y., Gong, Q.: Deep-subwavelength light routing in nanowire-loaded surface plasmon polariton waveguides: an alternative to the hybrid guiding scheme. J. Phys. D: Appl. Phys. 46(44), 445105:1–445105:13 (2013)

    Article  Google Scholar 

  • Bian, Yusheng, Zheng, Zheng, Zhao, Xin, Xiao, Jing, Liu, Haitao, Liu, Jiansheng, Zhou, Tao, Zhu, Jinsong: Gain-assisted light guiding at the subwavelength scale in a hybrid dielectric-loaded surface plasmon polariton waveguide based on a metal nanorod. J. Phys. D: Appl. Phys. 46(33), 335102:1–335102:7 (2013)

    Article  Google Scholar 

  • Bian, Y., Gong, Q.: Metallic nanowire-loaded plasmonic slot waveguide for highly confined light transport at telecom wavelength. IEEE J. Quantum Electron. 49(10), 870–876 (2013)

    Article  ADS  Google Scholar 

  • Bian, Y., Zheng, Z., Zhao, X., Yang, P., Liu, L., Zhu, J., Zhou, T.: Gain enhancement in a V-shaped plasmonic slot waveguide for efficient loss compensation at the subwavelength scale. Opt. Commun. 294, 414–419 (2013)

    Article  ADS  Google Scholar 

  • Boardman, A.D., Aers, G.C., Teshima, R.: Retarded edge modes of a parabolic wedge. Phys. Rev. B 24(10), 5703–5712 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  • Boltasseva, A., Volkov, V.S., Nielsen, R.B., Moreno, E., Rodrigo, S.G., Bozhevolnyi, S.I.: Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths. Opt. Express 16(8), 5252–5260 (2008)

    Article  ADS  Google Scholar 

  • Bozhevolnyi, S.I., Volkov, V.S., Devaux, E., Ebbesen, T.W.: Channel plasmon-polariton guiding by subwavelength metal grooves. Phys. Rev. Lett. 95(4), 046802:1–046802:4 (2005)

    Article  ADS  Google Scholar 

  • Bozhevolnyi, S.I., Volkov, V.S., Devaux, E., Laluet, J.Y., Ebbesen, T.W.: Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440(7083), 508–511 (2006)

    Article  ADS  Google Scholar 

  • Bozhevolnyi, S.I.: Effective-index modeling of channel plasmon polaritons. Opt. Express 14(20), 9467–9476 (2006)

    Article  ADS  Google Scholar 

  • Buckley, R., Berini, P.: Figures of merit for 2D surface plasmon waveguides and application to metal stripes. Opt. Express 15(19), 12174–12182 (2007)

    Article  ADS  Google Scholar 

  • Burke, J.J., Stegeman, G.I., Tamir, T.: Surface-polariton-like waves guided by thin, lossy metal films. Phys. Rev. B 33(8), 5186–5201 (1986)

    Article  ADS  Google Scholar 

  • Chang, S.H., Chiu, T.C., Tai, C.Y.: Propagation characteristics of the supermode based on two coupled semi-infinite rib plasmonic waveguides. Opt. Express 15(4), 1755–1761 (2007)

    Article  ADS  Google Scholar 

  • Chen, L., Zhang, T., Li, X., Huang, W.: Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film. Opt. Express 20(18), 20535–20544 (2012)

    Article  ADS  Google Scholar 

  • Choi, S.E., Kim, J.T.: Vertical coupling characteristics between hybrid plasmonic slot waveguide and Si waveguide. Opt. Commun. 285(18), 3735–3739 (2012)

    Article  ADS  Google Scholar 

  • Dai, D., He, S.: A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt. Express 17(19), 16646–16653 (2009)

    Article  ADS  Google Scholar 

  • Dai, D., He, S.: Low-loss hybrid plasmonic waveguide with double low-index nano-slots. Opt. Express 18(17), 17958–17966 (2010)

    Article  ADS  Google Scholar 

  • Dai, D., Shi, Y., He, S., Wosinski, L., Thylen, L.: Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium. Opt. Express 19(14), 12925–12936 (2011)

    Article  ADS  Google Scholar 

  • De Leon, I., Berini, P.: Amplification of long-range surface plasmons by a dipolar gain medium. Nat. Photonics 4(6), 382–387 (2010)

    Article  ADS  Google Scholar 

  • Dionne, J.A., Sweatlock, L.A., Atwater, H.A., Polman, A.: Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 73(3), 035407:1–035407:9 (2006)

    Article  ADS  Google Scholar 

  • Dobrzynski, L., Maradudin, A.A.: Electrostatic edge modes in a dielectric wedge. Phys. Rev. B 6(10), 3810–3815 (1972)

    Article  ADS  Google Scholar 

  • Gao, L., Tang, L., Hu, F., Guo, R., Wang, X., Zhou, Z.: Active metal strip hybrid plasmonic waveguide with low critical material gain. Opt. Express 20(10), 11487–11495 (2012)

    Article  ADS  Google Scholar 

  • García-Blanco, S.M., Pollnau, M., Bozhevolnyi, S.I.: Loss compensation in long-range dielectric-loaded surface plasmon-polariton waveguides. Opt. Express 19(25), 25298–25311 (2011)

    Article  ADS  Google Scholar 

  • Gather, M.C., Meerholz, K., Danz, N., Leosson, K.: Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer. Nat. Photonics 4(7), 457–461 (2010)

    Article  ADS  Google Scholar 

  • Gramotnev, D.K., Bozhevolnyi, S.I.: Plasmonics beyond the diffraction limit. Nat. Photonics 4(2), 83–91 (2010)

    Article  ADS  Google Scholar 

  • Grandidier, Jonathan, Francs, Gérard Colas Des, Massenot, Sébastien, Bouhelier, Alexandre, Markey, Laurent, Weeber, Jean-Claude, Finot, Christophe, Dereux, Alain: Gain-assisted propagation in a plasmonic waveguide at telecom wavelength. Nano Letters 9(8), 2935–2939 (2009)

    Article  ADS  Google Scholar 

  • Holmgaard, T., Bozhevolnyi, S.I.: Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides. Phys. Rev. B 75(24), 245405:1–245405:12 (2007)

    Article  ADS  Google Scholar 

  • Huang, C.C.: Ultra-long-range symmetric plasmonic waveguide for high-density and compact photonic devices. Opt. Express 21(24), 29544–29557 (2013)

    Article  ADS  Google Scholar 

  • Kim, J.T., Ju, J.J., Park, S., Kim, M.S., Park, S.K., Shin, S.Y.: Hybrid plasmonic waveguide for low-loss lightwave guiding. Opt. Express 18(3), 2808–2813 (2010)

    Article  ADS  Google Scholar 

  • Kou, Y., Ye, F., Chen, X.: Low-loss hybrid plasmonic waveguide for compact and high-efficient photonic integration. Opt. Express 19(12), 11746–11752 (2011)

    Article  ADS  Google Scholar 

  • Krasavin, A.V., Zayats, A.V.: Numerical analysis of long-range surface plasmon polariton modes in nanoscale plasmonic waveguides. Opt. Lett. 35(13), 2118–2120 (2010)

    Article  ADS  Google Scholar 

  • Lin, C.I., Gaylord, T.K.: Multimode metal-insulator-metal waveguides: analysis and experimental characterization. Phys. Rev. B 85(8), 085405:1–085405:9 (2012)

    ADS  Google Scholar 

  • Maier, Stefan A.: Plasmonics: Fundamentals and Applications. Springer, Berlin (2007)

    Google Scholar 

  • Mu, J., Chen, L., Li, X., Huang, W.P., Kimerling, L.C., Michel, J.: Hybrid nano ridge plasmonic polaritons waveguides. Appl. Phys. Lett. 103(13), 131107:1–131107:4 (2013)

    Google Scholar 

  • Novikov, I.V., Maradudin, A.A.: Channel polaritons. Phys. Rev. B 66(3), 035403:1–035403:13 (2002)

    Article  ADS  Google Scholar 

  • Okamoto, K.: Fundamentals of Optical Waveguides; Access Online via Elsevier (2010)

  • Oulton, R.F., Sorger, V.J., Genov, D.A., Pile, D.F.P., Zhang, X.: A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2(8), 496–500 (2008)

    Article  Google Scholar 

  • Oulton, R.F., Bartal, G., Pile, D.F.P., Zhang, X.: Confinement and propagation characteristics of subwavelength plasmonic modes. New J. Phys. 10(10), 105018:1–105018:14 (2008)

    Article  Google Scholar 

  • Ozbay, E.: Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758), 189–193 (2006)

    Article  ADS  Google Scholar 

  • Palik, E.D. (ed) Handbook of Optical Constants of Solids; Vol. 3, Access Online via Elsevier (1998)

  • Pile, D.F., Ogawa, T., Gramotnev, D.K., Okamoto, T., Haraguchi, M., Fukui, M., Matsuo, S.: Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding. Appl. Phys. Lett. 87(6), 061106:1–061106:3 (2005)

    Article  Google Scholar 

  • Prade, B., Vinet, J.Y., Mysyrowicz, A.: Guided optical waves in planar heterostructures with negative dielectric constant. Phys. Rev. B 44(24), 13556–13572 (1991)

    Article  ADS  MATH  Google Scholar 

  • Raether, Heinz: Surface Plasmons on Smooth Surfaces. Springer, Berlin Heidelberg (1988)

    Google Scholar 

  • Rao, R., Tang, T.: Study of an active hybrid gap surface plasmon polariton waveguide with nanoscale confinement size and low compensation gain. J. Phys. D: Appl. Phys. 45(24), 245101:1–245101:12 (2012)

    Article  MATH  Google Scholar 

  • Rycenga, Matthew, Cobley, Claire M., Zeng, Jie, Li, Weiyang, Moran, Christine H., Zhang, Qiang, Qin, Dong, Xia, Younan: Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111(6), 3669–3712 (2011)

    Article  Google Scholar 

  • Sharma, T., Kumar, M.: Hollow hybrid plasmonic waveguide for nanoscale optical confinement with long-range propagation. Appl. Opt. 53(9), 1954–1957 (2014)

    Article  ADS  Google Scholar 

  • Srituravanich, W., Fang, N., Sun, C., Luo, Q., Zhang, X.: Plasmonic nanolithography. Nano Letters 4(6), 1085–1088 (2004)

    Article  ADS  Google Scholar 

  • Srivastava, N., Banerjee, K.: Interconnect challenges for nanoscale electronic circuits. Jom 56(10), 30–31 (2004)

    Article  Google Scholar 

  • Tsukerman, Igor: Computational Methods for Nanoscale Applications: Particles, Plasmons and Waves. Springer, Berlin (2008)

    Book  Google Scholar 

  • Veronis, G., Fan, S.: Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Opt. Lett. 30(24), 3359–3361 (2005)

    Article  ADS  Google Scholar 

  • Zhang, J., Cai, L., Bai, W., Xu, Y., Song, G.: Hybrid plasmonic waveguide with gain medium for lossless propagation with nanoscale confinement. Opt. Lett. 36(12), 2312–2314 (2011)

    Article  ADS  Google Scholar 

  • Zia, R., Selker, M.D., Catrysse, P.B., Brongersma, M.L.: Geometries and materials for subwavelength surface plasmon modes. JOSA A 21(12), 2442–2446 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Olyaeefar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olyaeefar, B., Khoshsima, H. & Khorram, S. Inverse-rib hybrid plasmonic waveguide for low-loss deep sub-wavelength surface plasmon polariton propagation. Opt Quant Electron 47, 1791–1800 (2015). https://doi.org/10.1007/s11082-014-0036-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-014-0036-7

Keywords

Navigation