Skip to main content
Log in

The offset of the quantum interband transitions in non-crystalline semiconductors

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The paper proposes an approach to the description of non-crystalline semiconductors, which are promising materials in solar photovoltaic industry. We describe the optical wave interaction with film structure that has an amorphous solid state, its thickness being about 100 nanometers. The edge’s fundamental absorption displacements in semiconductors with the introduction of defects into the periodic lattice have been explained by comparing the crystalline and amorphous material. Averaged experimental data have been compared with the proposed description of the absorption coefficient in single-crystal and amorphous silicon. Optical band gap expansion in silicon, which leads to the absorption spectrum shift from 1.12 to 1.6 eV, has been shown and described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ambroziak, A.: Construction and Technology of Photovoltaic Devices. Wydawnictwa Naukowo-Techniczne, Warsaw (1965)

    Google Scholar 

  • Anselm, I.A.: Introduction to the Theory of Semiconductors. Nauka, Moscow (1978)

    Google Scholar 

  • Babiker, S.G., Shuai, Y., Sid-Ahmed, M.O., Xie, M., Liu, M.: Enhancement of optical absorption in an amorphous silicon solar cell with periodic grating structure. Int. J. Energy Inf. Commun. 3(4), 9–20 (2012)

    Google Scholar 

  • Bahov, V.A., Mazinov, A.C., Pisarenko, L.D.: Detailing of localized levels of disordered semiconductor structures. Electronika i svyaz 1(54), 12–16 (2010)

    Google Scholar 

  • Bahrami, A., Mohammadnejad, S., Soleimaninezhad, S.: Photovoltaic cells technology: principles and recent developments. Opt. Quantum Electron. 45(2), 161–197 (2013)

    Article  Google Scholar 

  • Brennan, K.F.: The Physics of Semiconductors with Application to Optoelectronic Devices. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  • Bubert, H., Jenett, H.: Surface and Thin Film Analysis (Principles, Instrumentation, Application). Wiley-VCH Verlag GmbH, Weinheim (2002)

    Book  Google Scholar 

  • Bykov, M., Bykov, A., Mazinov, A., Slipchenko, N.: Study of the physical processes in the amorphous silicon films at different hydrogen concentrations in plasma. Vesnik SumSU. Series. Phys. Math. Mech. 1, 176–180 (2008)

    Google Scholar 

  • Chopra, K.L., Das, S.R.: Thin Film Solar Cells. Plenum Press, New York (1983)

    Book  Google Scholar 

  • Cody, G.D., Tiedje, T., Abeles, B., Moustakas, T.D., Brooks, B., Goldstein, Y.: Disorder and the optical absorbtion edge of hydrogenated amorphous silicon. J. Phys. 10(42), 4-310–C4-304 (1981)

  • De Wolf, S., Olibet, S., Ballif, C.: Stretched-exponential a-Si:H/c-Si interface recombination decay. Appl. Phys. Lett. 93, 032101-1–03210-3 (2008)

  • El-Ghonemy, A.M.K.: Photovoltaic solar energy: review. Int. J. Sci. Eng. Res. 3(11), 1–43 (2012)

    Google Scholar 

  • Faist, J.: Optical Properties of Semiconductors. Eidgenossische Technische Hochshule Zurich, Zurich (2008)

    Google Scholar 

  • Golikova, O.A., Kazanin, M.M.: The features of photovoltaic properties of nanostructured films of hydrogenated silicon. Fiz. Teh. Poluprovodn. 35(10), 1240–1243 (2001)

    Google Scholar 

  • Green, M.A., Keevers, M.J.: Optical properties of intrinsic silicon at 300 K. Prog. Photovolt. Res. Appl. 3, 189–192 (1995)

    Article  Google Scholar 

  • Green, M.A.: Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients. Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008)

    Article  MATH  Google Scholar 

  • Hamakawa, Y.: Thin-Film Solar Cells. Next Generation Photovoltaics and Its Applications. Springer, Berlin (2004)

    MATH  Google Scholar 

  • Iken, J.: PV industry takes a breather. Sol. Wind Energy 3, 78–85 (2014)

    Google Scholar 

  • Kazanskii, A.G., Terukov, E.I., Forsh, P.A., Khenkin, M.V.: Specific features of photoelectric and optical properties of amorphous hydrogenated silicon films produced by plasmochemical deposition from monosilane-hydrogen mixture. Semiconductors 45(4), 510–514 (2011)

    Article  ADS  Google Scholar 

  • Kre, R.N., Mousse, M.L., Tchetche, Y., Bouo Bella, F.X.D., Aka, B., Thomas, P.A.: Optical absorption of the hydrogenated evaporated amorphous silicon. Int. J. Phys. Sci. 5(6), 675–682 (2010)

  • Mazinov, A., Shevchenko, A., Bahov, V.: Quantum interactions of optical radiation with the defect centres in the tails of the forbidden band of amorphous materials. Opt. Appl. XLIV(2), 327–335 (2014)

    Google Scholar 

  • Mazinov, A., Shevchenko, A., Bykov, M.: The asymmetry of the distribution density volume uncompensated charge at the metallurgical p-n junction. J. Nano- Electron. Phys. 4(3), 03026-1–03026-4 (2012)

  • Mazinov, A.C., Shevchenko, A.I.: The quantization of the absorption spectrum for amorphous semiconductor films. In: Proceedings the International Conference “Nanomaterials: Applications and Properties” 2(1), 01NTF13-1 (2013)

  • Mazinov, A.S., Bahov, V.A., Bykov, M.A.: Description of interaction of quantum radiation with amorphous film structures. Appl. Radio Electron. Sci. J. 12(3), 447–451 (2013)

    Google Scholar 

  • Olibet, S., Vallat-Sauvain, E., Ballif, C.: Model for a-Si:H/c-Si interface recombination. Phys. Rev. B 76, 035326-1–035326-14 (2007)

  • Poruba, A., Springer, J., Mullerova, L., Beitlerova, A., Vanecek, M., Wyrsch, N., Shah, A.: Temperature dependence of the optical absorption coefficient of microcrystalline silicon. J. Non-Cryst. Solids 338–340, 222–227 (2004)

    Article  Google Scholar 

  • Primer, A.: Quasicristals. Clarendon Press, Oxford (1994)

    Google Scholar 

  • Santberger, R., van Zolingen, R.J.C.: The absorption factor of crystalline silicon PV cells: a numerical and experimental study. Sol. Energy Mater. Sol. Cells 92(4), 432–444 (2008)

    Article  MATH  Google Scholar 

  • Sapoval, B., Hermann, C.: Physics of Semiconductors. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  • Shah, A.: Thin-Film Silicon Solar Cells. EPFL Press, Lausanne (2010)

    Book  Google Scholar 

  • Shockley, W.: Electrons and Holes in Semiconductors. van Nostrand, New York (1959)

    Google Scholar 

  • Street, R.: Hydrogenated Amorphous Silicon. Cambridge Solid State Science Series. Cambridge University Press, New York (1991)

    MATH  Google Scholar 

  • Street, R.: Doping and the fermi energy in amorphous silicon. Phys. Rev. Lett. 49(16), 1187–1190 (1982)

    Article  ADS  Google Scholar 

  • Tiedje, T., Yablonovitch, E., Cody, G.D., Brooks, B.G.: Limiting efficiency of silicon solar cells. IEEE Trans. Electron Devices 31(5), 711–716 (1984)

    Article  ADS  Google Scholar 

  • Topic, M.: Contemporary inorganic thin film photovoltaic materials and technologies contemporary materials. Renew. Energy Sour. 2(2), 94–102 (2011)

    Google Scholar 

  • Trupke, T., Green, M.A., Wurfel, P., Altermatt, P.P., Wang, A., Zhao, J., Corkish, R.: Temperature dependence of the radiative recombination coefficient of intrinsic crystalline silicon. J. Appl. Phys. 94(8), 4930–4937 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alim Mazinov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazinov, A., Shevchenko, A. The offset of the quantum interband transitions in non-crystalline semiconductors. Opt Quant Electron 47, 1659–1669 (2015). https://doi.org/10.1007/s11082-014-0023-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-014-0023-z

Keywords

Navigation