Skip to main content
Log in

Realization of soliton interaction in 100 Gbps, uncompensated single channel telecommunication system implemented with various telecom fibers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we demonstrate the effect of soliton interaction in 100 Gbps telecommunication system implemented with four types of practically deployed telecom fibers like conventional single mode fiber, Alcatel’s teralight fiber, Lucent’s truewave plus fiber (TW+) and large effective area fiber. With the initial relative spacing of in-phase soliton chosen as q\(\,=\,\)5.28, the characteristic soliton interaction point and the collision length with respect to various fiber types were studied. The practical undesirability of soliton interaction is noted for three collision period with all types of fibers to characterize the degradation after successive collisions. Besides studying the soliton interaction, we have also demonstrated its effect in telecommunication system degradation with the performance measures like Quality factor and eye patterns. Eye patterns were used to picture the mechanism of soliton interaction within the collision length. It was found system implemented with TW+ fiber of low dispersion co-efficient comparatively has long interaction length and suitable for long distance transmission without dispersion compensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abdusalam, A., Shaban, M.: Optical switching based on bragg solitons in a nonuniform fiber bragg grating. Int. J. Phys. Nucl. Sci. Eng. 7(12), 43–51 (2013)

    Google Scholar 

  • Agrawal, G.P.: Nonlinear Fiber Optics, 4th edn. Academic Press, USA (2008)

    Google Scholar 

  • Aitchison, J.S., Weiner, A.M., Silberberg, Y., Leaird, D.E., Oliver, M.K., Jackel, J.L., Smith, P.W.E.: Experimental observation of spatial soliton interactions. Opt. Lett. 16(1), 15–17 (1991)

    Article  ADS  Google Scholar 

  • Anderkson, P.A.: 40 Gbps soliton transmission on installed lines, IEE colloquium on high speed and long distance transmission, 10/1–10/6 (1999)

  • Antwiwaa, A., Prince, S.: Effect of interaction caused by relative phase, amplitude and spacing on neighboring soliton pulses. In: Proceedings of the World Congress on Engineering Vol II, July 4–6, London (2012)

  • Biswas, A., Konar, S., Zerrad, E.: Soliton–soliton interaction with parabolic law nonlinearity. J. Electromagn. Waves Appl. 20(7), 927–939 (2006)

    Article  MathSciNet  Google Scholar 

  • Coelho, L.D., Basltos-Filho, C.J.A., Martie-Filho, J.F.: 160 Gbits/s soliton transmission in the S & C bands. In: Proceedings SBMO/IEEE MTT-S IMOC, pp. 245–249 (2003)

  • Elgin, J.N., Brabec, T., Kelly, S.M.J.: A perturbative theory of soliton propagation in the presence of third order dispersion. Opt. Commun. 114, 321–328 (1995)

    Article  ADS  Google Scholar 

  • Golles, M., Uzunov, I.M., Lederer, F.: Break up of \(N\)-soliton bound states due to intrapulse Raman scattering and third order dispersion: an eigenvalue analysis. Phys. Lett. A 231, 195–200 (1997)

    Article  ADS  Google Scholar 

  • Gordon, J.P., Mollenauer, L.F.: Solitons in Optical Fibers: Fundamentals and Applications. Academic Press, Boston (2006)

    MATH  Google Scholar 

  • Hasegawa, A.: Amplification and reshaping of optical solitons in glass fiber. Opt. Lett. 8, 650–652 (1983)

    Article  ADS  Google Scholar 

  • Hasegawa, A.: Soliton-based ultra-high speed optical communications. Pramana 57(5&6), 1097–1127 (2001)

    Article  ADS  Google Scholar 

  • Haus, H.A., Wong, W.S.: Solitons in optical communication. Rev. Mod. Phys. 68(2), 423–444 (1996)

    Article  ADS  Google Scholar 

  • Hu, C., En-Cheng, X.U., Ai-Ping, L., Hao, L.S.: propagation control of soliton trains in dispersion shifted fibers in the presence of third-order dispersion. Chin. Phy. Let 22(6), 1429–1432 (2005)

    Article  ADS  Google Scholar 

  • Huang, J., Lin, J., Lan, C., Wang, D.: The Raman non-gain and self-steepening effectsin Raman fiber amplifiers. Optik 125, 772–776 (2014)

    Article  ADS  Google Scholar 

  • Iyer, S., Singh, S.P.: Theoretical evaluation of combined nonlinearities and amplified spontaneous emission noise penalties in optical star WDM networks based on ITU-T conforming optical fibers. IETE J. Res. 58(6), 483–493 (2012)

    Article  Google Scholar 

  • Jakšić, B., Stefanović, M., Spalević, P., Savić, A., Bogdanović, R.: Numerical analysis of relative phase and amplitude at the interaction two solitons in optical fibers. Serb. J. Electr. Eng. 8(2), 213–220 (2011)

    Article  Google Scholar 

  • Jia, R.-X., Wang, Y.-C., Liu, W.-J., Lei, M.: Soliton interactions in dispersion-decreasing fibers with the exponential dispersion profile. J. Mod. Opt. 60(21), 1992–1996 (2014)

    Article  ADS  Google Scholar 

  • Kivshar, Y.S.: Nonlinear dynamics near the zero dispersion point in optical fibers. Phy. Rev. A 43(3), 1677–1679 (1991)

    Article  ADS  Google Scholar 

  • Konar, S., Biswas, A.: Intra-channel collision of Kerr law optical solitons. Progr. Electromagn. Res. PIER 53, 55–67 (2005)

    Article  Google Scholar 

  • Kumar, D.R., Rao, B.P.: Soliton interaction in birefringent fibers with third order dispersion. World Acad. Sci. Eng. Technol. 3, 4–24 (2009)

    Google Scholar 

  • Kumar, H., Chand, F.: Dark and bright solitary wave solutions of the higher order nonlinear Schrödinger equation with self-steepening and self-frequency shift effects. J. Nonlinear Opt. Phys. Mater. 22, 1–13 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Latchio Tiofack, C.G., Mohamadou, A., Kofané, T.C., Porsezian, K.: Exact quasi-soliton solutions and soliton interaction for the inhomogeneous coupled nonlinear. Schrödinger Equ. 57(4), 261–272 (2010)

    Google Scholar 

  • Lee, J.H.: Soliton self-frequency shift: experimental demonstrations and applications. IEEE J. Quantum Electron. 14(3), 713 (2008)

    Article  Google Scholar 

  • Liu, W.-J., Tian, B., Tao, X., Jiang, Y.: Analytic study on bound solitons and soliton collisions for the coupled nonlinear Schrödinger equations. J. Mod. Opt. 59(5), 470–483 (2012)

    Article  ADS  Google Scholar 

  • Liu, W.-J., Leia, M.: All-optical switches using solitons within nonlinear fibers. J. Electromagn. Waves Appl. 27(18), 2288–2297 (2013)

    Article  Google Scholar 

  • Mitschke, F., Hause, A., Mahnke, C., Rohrmann, P.: Recent insight about solitons in optical fibers. Nonlinear Phenom. Complex Syst. 15(4), 369–377 (2012)

    Google Scholar 

  • Mollenauer, L.F., Gordon, J.P., Islam, M.N.: Soliton propagation in long fiber with periodically compensated loss. IEEE. J. Quantum Electr. 22, 157–173 (1986)

    Article  ADS  Google Scholar 

  • Mollenauer, L.F., Smith, K.: Demonstration of soliton transmission over more than 4000 km in fiber with loss periodically compensated by Raman Gain. Opt. Lett. 13, 675–677 (1988)

    Article  ADS  Google Scholar 

  • Mollenauer, L.F., Holmdel, N.J., Evangelides, S.G.: Long distance soliton propagation using lumped amplifiers and dispersion shifted fiber. J. Lightw. Technol. 9(2), 194–197 (1991)

    Article  ADS  Google Scholar 

  • Nakazawa, M.: Soliton transmission in telecommunication networks. IEEE Comm. Mag. 32, 34–41 (1994)

  • Nakazawa, M., Kubota, H., Suzuki, K., Yamada, E., Sahara, A.: Recent progress in soliton transmission technology. Chaos 10, 486–514 (2000)

    Article  ADS  Google Scholar 

  • Pal, D., Ali, S.K.G., Talukdar, B.: Evolution of optical pulses in the presence of third-order dispersion. Pramana 72(6), 939–950 (2009)

    Article  ADS  Google Scholar 

  • Rotschild, C., Alfassi, B., Cohen, O., Segev, M.: Long-range interactions between optical Solitons. Nat. Phys. 2, 769–774 (2006)

    Article  Google Scholar 

  • Segev, M., Stegeman, G.: Self trapping of optical beams, spatial solitons. Phys. Today. 51, 42–48 (1998)

  • Stegeman, G.I., Segev, M.: Optical spatial solitons and their interactions: universality and diversity. Science 286, 1518–1523 (1999)

    Article  Google Scholar 

  • Trippenbach, M., Band, Y.B.: Effects of self-steepening and self-frequency shifting on short-pulse splitting in dispersive nonlinear media. Phys. Rev. A 57(6), 4791–4803 (1998)

    Article  ADS  MATH  Google Scholar 

  • Tsoy, E.N., de Sterke, C.M.: Dynamics of ultrashort pulses near zero dispersion wavelength. J. Opt. Soc. Am. B 23(11), 2425–2433 (2006)

    Article  ADS  Google Scholar 

  • Voronin, A., Zheltikov, A.M.: Soliton self-frequency shift decelerated by self steepening. Opt. Lett. 33(15), 1723–1725 (2008)

    Article  ADS  Google Scholar 

  • Wadati, M.: Introduction to solitons. Pramana 57(5&6), 841–847 (2001)

    Article  ADS  Google Scholar 

  • Wai, P.K.A., Menyuk, C.R., Chen, H.H., Lee, Y.C.: Soliton at zero group dispersion of a single model fiber. Opt. Lett. 12(8), 628–630 (1987)

  • Wandel, M., Kristensen, P.: Fiber designs for high figure of merit and high slope dispersion compensating fibers. J. Opt. Fiber. Commun. Rep. 3, 25–60 (2005)

    Article  Google Scholar 

  • Xu, Z., Li, L., Li, Z., Zhou, G.: Soliton interaction under the influence of higher-order effects. Opt. Commun. 210, 375–384 (2002)

    Article  ADS  Google Scholar 

  • Zentner, S., Sumichrast, L.: Computer simulation of the propagation and interaction of soliton sequences in nonlinear optical fibers. J. Electr. Eng. 52(3–4), 57–62 (2001)

    Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Porsezhian, Professor, Department of Physics, Pondicherry University, India for the motivation and discussions. He is also greatful to Mr. Anbazhagan Jayaram, Deputy Engineer, Bharat Electronics Ltd, Pune and Mr. S. Srinivasan, Sub-Divisional Engineer, Regional Telecom Training Centre (RTTC) for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupeshwaran Mani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mani, B., Chitra, K. & Sivasubramanian, A. Realization of soliton interaction in 100 Gbps, uncompensated single channel telecommunication system implemented with various telecom fibers. Opt Quant Electron 47, 1637–1658 (2015). https://doi.org/10.1007/s11082-014-0022-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-014-0022-0

Keywords

Navigation