Skip to main content

A versatile all-optical parity-time signal processing device using a Bragg grating induced using positive and negative Kerr-nonlinearity


The properties of gratings with Kerr nonlinearity and PT symmetry are investigated in this paper. The impact of the gain and loss saturation on the response of the grating is analysed for different input intensities and gain/loss parameters. Potential applications of these gratings as switches, logic gates and amplifiers are also shown.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  • Achilleos, V., Kevrekidis, P.G., Frantzeskakis, D.J., Carretero-González, R.: Dark solitons and vortices in PT-symmetric nonlinear media: from spontaneous symmetry breaking to nonlinear PT phase transitions. Phys. Rev. A. 86, 013808 (2012)

    ADS  Article  Google Scholar 

  • Aitchison, J.S., Hutchings, D.C., Kang, J.U., Stegeman, G.I., Villeneuve, a: The nonlinear optical properties of AlGaAs at the half band gap. IEEE J. Quantum Electron. 33, 341–348 (1997)

    ADS  Article  Google Scholar 

  • Bass, M., Li, G., van Stryland, E.: Handbook of Optics, vol. 4. McGraw Hill, New York (2010)

    Google Scholar 

  • Brzozowski, L., Sargent, E.H.: Optical signal processing using nonlinear distributed feedback structures. IEEE J. Quantum Electron. 36, 550–555 (2000)

    ADS  Article  Google Scholar 

  • Chong, Y.D., Ge, L., Stone, aD: PT-symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett. 106, 093902 (2011)

    ADS  Article  Google Scholar 

  • Christopoulos, C.: The Transmission-Line Modeling Method TLM. IEEE Press, Piscataway (1995)

    Book  Google Scholar 

  • Collin, R.E.: Field theory of Guided Waves. IEEE Press, New York (1991)

    MATH  Google Scholar 

  • Feng, L., Xu, Y.-L., Fegadolli, W.S., Lu, M.-H., Oliveira, J.E.B., Almeida, V.R., Chen, Y.-F., Scherer, A.: Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013)

    ADS  Article  Google Scholar 

  • Feng, L., Wong, Z.J., Ma, R., Wang, Y., Zhang, X.: Parity-time synthetic laser. arXiv Prepr. arXiv:1405.2863 (2014)

  • Hagness, S.C., Joseph, R.M., Taflove, A.: Subpicosecond electrodynamics of distributed Bragg reflector microlasers: results from finite difference time domain simulations. Radio Sci. 31, 931–941 (1996)

    ADS  Article  Google Scholar 

  • Hodaei, H., Miri, M., Heinrich, M., Christodoulides, D.N., Khajavikhan, M.: PT-symmetric microring lasers: self-adapting broadband mode-selective resonators. arXiv Prepr. arXiv:1405.2103 (2014)

  • Hoefer, W.J.R.: The transmission-line matrix method-theory and applications. IEEE Trans. Microw. Theory Tech. 33, 882–893 (1985)

    ADS  Article  Google Scholar 

  • Janyani, V., Vukovic, A., Paul, J.: The development of TLM models for nonlinear optics. Microw. Rev. 10, 35–42 (2004)

    Google Scholar 

  • Janyani, V., Vukovic, A., Paul, J.D., Sewell, P., Benson, T.M.: Time domain simulation in photonics: a comparison of nonlinear dispersive polarisation models. Opt. Quantum Electron. 37, 3–24 (2005)

    Article  Google Scholar 

  • Kulishov, M., Laniel, J.M., Bélanger, N., Azaña, J., Plant, D.V.: Nonreciprocal waveguide Bragg gratings. Opt. Express. 13, 3068–3078 (2005)

    ADS  Article  Google Scholar 

  • Lan, S., Gopal, A.V., Kanamoto, K., Ishikawa, H.: Ultrafast response of photonic crystal atoms with Kerr nonlinearity to ultrashort optical pulses. Appl. Phys. Lett. 84, 5124–5126 (2004)

  • Lin, Z., Ramezani, H., Eichelkraut, T., Kottos, T., Cao, H., Christodoulides, D.N.: Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011)

    ADS  Article  Google Scholar 

  • Makris, K.G., El-Ganainy, R., Christodoulides, D.N.: Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008)

    ADS  Article  Google Scholar 

  • Musslimani, Z., Makris, K., El-Ganainy, R., Christodoulides, D.N.: Optical solitons in PT periodic potentials. Phys. Rev. Lett. 100, 030402 (2008)

    ADS  Article  Google Scholar 

  • Nixon, S., Ge, L., Yang, J.: Stability analysis for solitons in PT-symmetric optical lattices. Phys. Rev. A. 85, 023822 (2012)

    ADS  Article  Google Scholar 

  • Paré, C., Villeneuve, A., Bélanger, P.-A., Doran, N.J.: Compensating for dispersion and the nonlinear Kerr effect without phase conjugation. Opt. Lett. 21, 459–461 (1996)

  • Paul, J., Christopoulos, C., Thomas, D.W.P.: Generalized material models in TLM. I. Materials with frequency-dependent properties. IEEE Trans. Antennas Propag. 47, 1528–1534 (1999)

    ADS  Article  Google Scholar 

  • Paul, J., Christopoulos, C., Thomas, D.W.P.: Generalized material models in TLM—part 3: materials with nonlinear properties. IEEE Trans. Antennas Propag. 50, 997–1004 (2002)

    ADS  Article  Google Scholar 

  • Peng, B., Özdemir, Ş.K., Lei, F., Monifi, F., Gianfreda, M., Long, G.L., Fan, S., Nori, F., Bender, C.M., Yang, L.: Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 1–33 (2014)

    Article  Google Scholar 

  • Phang, S., Vukovic, A., Susanto, H., Benson, T., Sewell, P.: Time domain modeling of all-optical switch based on PT-symmetric Bragg grating. In: 29th Annual Review of Progress in Applied Computational Electromagnetics, pp. 693–698. Applied Computational Electromagnetics Society, Monterey, CA (2013a)

  • Phang, S., Vukovic, A., Susanto, H., Benson, T.M., Sewell, P.: Ultrafast optical switching using parity-time symmetric Bragg gratings. J. Opt. Soc. Am. B. 30, 2984–2991 (2013b)

  • Phang, S., Vukovic, A., Susanto, H., Benson, T.M., Sewell, P.: Impact of dispersive and saturable gain/loss on bistability of nonlinear parity-time Bragg gratings. Opt. Lett. 39, 2603–2606 (2014)

    Article  Google Scholar 

  • Ramezani, H., Kottos, T., El-Ganainy, R., Christodoulides, D.N.: Unidirectional nonlinear PT-symmetric optical structures. Phys. Rev. A. 82, 043803 (2010)

    ADS  Article  Google Scholar 

  • Regensburger, A., Bersch, C., Miri, M.-A., Onishchukov, G., Christodoulides, D.N., Peschel, U.: Parity-time synthetic photonic lattices. Nature 488, 167–171 (2012)

    ADS  Article  Google Scholar 

  • Rüter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 192–195 (2010)

    Article  Google Scholar 

  • Schindler, J., Lin, Z., Lee, J.M., Ramezani, H., Ellis, F.M., Kottos, T.: \({\cal PT}\)-symmetric electronics. J. Phys. A Math. Theor. 45, 444029 (2012)

    ADS  Article  Google Scholar 

  • Zhu, X., Feng, L., Zhang, P., Yin, X., Zhang, X.: One-way invisible cloak using parity-time symmetric transformation optics. Opt. Lett. 38, 2821–2824 (2013)

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. Phang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Phang, S., Vukovic, A., Benson, T.M. et al. A versatile all-optical parity-time signal processing device using a Bragg grating induced using positive and negative Kerr-nonlinearity. Opt Quant Electron 47, 37–47 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Kerr-nonlinearity
  • Gratings
  • Balanced gain and loss