Optical and Quantum Electronics

, Volume 47, Issue 1, pp 37–47 | Cite as

A versatile all-optical parity-time signal processing device using a Bragg grating induced using positive and negative Kerr-nonlinearity

  • S. PhangEmail author
  • A. Vukovic
  • T. M. Benson
  • H. Susanto
  • P. Sewell


The properties of gratings with Kerr nonlinearity and PT symmetry are investigated in this paper. The impact of the gain and loss saturation on the response of the grating is analysed for different input intensities and gain/loss parameters. Potential applications of these gratings as switches, logic gates and amplifiers are also shown.


Kerr-nonlinearity Gratings Balanced gain and loss 


  1. Achilleos, V., Kevrekidis, P.G., Frantzeskakis, D.J., Carretero-González, R.: Dark solitons and vortices in PT-symmetric nonlinear media: from spontaneous symmetry breaking to nonlinear PT phase transitions. Phys. Rev. A. 86, 013808 (2012)ADSCrossRefGoogle Scholar
  2. Aitchison, J.S., Hutchings, D.C., Kang, J.U., Stegeman, G.I., Villeneuve, a: The nonlinear optical properties of AlGaAs at the half band gap. IEEE J. Quantum Electron. 33, 341–348 (1997)ADSCrossRefGoogle Scholar
  3. Bass, M., Li, G., van Stryland, E.: Handbook of Optics, vol. 4. McGraw Hill, New York (2010)Google Scholar
  4. Brzozowski, L., Sargent, E.H.: Optical signal processing using nonlinear distributed feedback structures. IEEE J. Quantum Electron. 36, 550–555 (2000)ADSCrossRefGoogle Scholar
  5. Chong, Y.D., Ge, L., Stone, aD: PT-symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett. 106, 093902 (2011)ADSCrossRefGoogle Scholar
  6. Christopoulos, C.: The Transmission-Line Modeling Method TLM. IEEE Press, Piscataway (1995)CrossRefGoogle Scholar
  7. Collin, R.E.: Field theory of Guided Waves. IEEE Press, New York (1991)zbMATHGoogle Scholar
  8. Feng, L., Xu, Y.-L., Fegadolli, W.S., Lu, M.-H., Oliveira, J.E.B., Almeida, V.R., Chen, Y.-F., Scherer, A.: Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013)ADSCrossRefGoogle Scholar
  9. Feng, L., Wong, Z.J., Ma, R., Wang, Y., Zhang, X.: Parity-time synthetic laser. arXiv Prepr. arXiv:1405.2863 (2014)
  10. Hagness, S.C., Joseph, R.M., Taflove, A.: Subpicosecond electrodynamics of distributed Bragg reflector microlasers: results from finite difference time domain simulations. Radio Sci. 31, 931–941 (1996)ADSCrossRefGoogle Scholar
  11. Hodaei, H., Miri, M., Heinrich, M., Christodoulides, D.N., Khajavikhan, M.: PT-symmetric microring lasers: self-adapting broadband mode-selective resonators. arXiv Prepr. arXiv:1405.2103 (2014)
  12. Hoefer, W.J.R.: The transmission-line matrix method-theory and applications. IEEE Trans. Microw. Theory Tech. 33, 882–893 (1985)ADSCrossRefGoogle Scholar
  13. Janyani, V., Vukovic, A., Paul, J.: The development of TLM models for nonlinear optics. Microw. Rev. 10, 35–42 (2004)Google Scholar
  14. Janyani, V., Vukovic, A., Paul, J.D., Sewell, P., Benson, T.M.: Time domain simulation in photonics: a comparison of nonlinear dispersive polarisation models. Opt. Quantum Electron. 37, 3–24 (2005)CrossRefGoogle Scholar
  15. Kulishov, M., Laniel, J.M., Bélanger, N., Azaña, J., Plant, D.V.: Nonreciprocal waveguide Bragg gratings. Opt. Express. 13, 3068–3078 (2005)ADSCrossRefGoogle Scholar
  16. Lan, S., Gopal, A.V., Kanamoto, K., Ishikawa, H.: Ultrafast response of photonic crystal atoms with Kerr nonlinearity to ultrashort optical pulses. Appl. Phys. Lett. 84, 5124–5126 (2004)Google Scholar
  17. Lin, Z., Ramezani, H., Eichelkraut, T., Kottos, T., Cao, H., Christodoulides, D.N.: Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011)ADSCrossRefGoogle Scholar
  18. Makris, K.G., El-Ganainy, R., Christodoulides, D.N.: Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008)ADSCrossRefGoogle Scholar
  19. Musslimani, Z., Makris, K., El-Ganainy, R., Christodoulides, D.N.: Optical solitons in PT periodic potentials. Phys. Rev. Lett. 100, 030402 (2008)ADSCrossRefGoogle Scholar
  20. Nixon, S., Ge, L., Yang, J.: Stability analysis for solitons in PT-symmetric optical lattices. Phys. Rev. A. 85, 023822 (2012)ADSCrossRefGoogle Scholar
  21. Paré, C., Villeneuve, A., Bélanger, P.-A., Doran, N.J.: Compensating for dispersion and the nonlinear Kerr effect without phase conjugation. Opt. Lett. 21, 459–461 (1996)Google Scholar
  22. Paul, J., Christopoulos, C., Thomas, D.W.P.: Generalized material models in TLM. I. Materials with frequency-dependent properties. IEEE Trans. Antennas Propag. 47, 1528–1534 (1999)ADSCrossRefGoogle Scholar
  23. Paul, J., Christopoulos, C., Thomas, D.W.P.: Generalized material models in TLM—part 3: materials with nonlinear properties. IEEE Trans. Antennas Propag. 50, 997–1004 (2002)ADSCrossRefGoogle Scholar
  24. Peng, B., Özdemir, Ş.K., Lei, F., Monifi, F., Gianfreda, M., Long, G.L., Fan, S., Nori, F., Bender, C.M., Yang, L.: Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 1–33 (2014)CrossRefGoogle Scholar
  25. Phang, S., Vukovic, A., Susanto, H., Benson, T., Sewell, P.: Time domain modeling of all-optical switch based on PT-symmetric Bragg grating. In: 29th Annual Review of Progress in Applied Computational Electromagnetics, pp. 693–698. Applied Computational Electromagnetics Society, Monterey, CA (2013a)Google Scholar
  26. Phang, S., Vukovic, A., Susanto, H., Benson, T.M., Sewell, P.: Ultrafast optical switching using parity-time symmetric Bragg gratings. J. Opt. Soc. Am. B. 30, 2984–2991 (2013b)Google Scholar
  27. Phang, S., Vukovic, A., Susanto, H., Benson, T.M., Sewell, P.: Impact of dispersive and saturable gain/loss on bistability of nonlinear parity-time Bragg gratings. Opt. Lett. 39, 2603–2606 (2014)CrossRefGoogle Scholar
  28. Ramezani, H., Kottos, T., El-Ganainy, R., Christodoulides, D.N.: Unidirectional nonlinear PT-symmetric optical structures. Phys. Rev. A. 82, 043803 (2010)ADSCrossRefGoogle Scholar
  29. Regensburger, A., Bersch, C., Miri, M.-A., Onishchukov, G., Christodoulides, D.N., Peschel, U.: Parity-time synthetic photonic lattices. Nature 488, 167–171 (2012)ADSCrossRefGoogle Scholar
  30. Rüter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 192–195 (2010)CrossRefGoogle Scholar
  31. Schindler, J., Lin, Z., Lee, J.M., Ramezani, H., Ellis, F.M., Kottos, T.: \({\cal PT}\)-symmetric electronics. J. Phys. A Math. Theor. 45, 444029 (2012)ADSCrossRefGoogle Scholar
  32. Zhu, X., Feng, L., Zhang, P., Yin, X., Zhang, X.: One-way invisible cloak using parity-time symmetric transformation optics. Opt. Lett. 38, 2821–2824 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • S. Phang
    • 1
    Email author
  • A. Vukovic
    • 1
  • T. M. Benson
    • 1
  • H. Susanto
    • 2
  • P. Sewell
    • 1
  1. 1.Faculty of Engineering, The George Green Institute for Electromagnetics ResearchUniversity of NottinghamNottinghamUK
  2. 2.Department of Mathematical SciencesUniversity of EssexColchesterUK

Personalised recommendations