Skip to main content
Log in

Metal-dielectric multilayer structure supporting surface plasmons: electromagnetic modelling by the method of single expression

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Surface plasmons’ (SPs) excitation in Kretschmann configuration, where the thin metallic layer is substituted by a metal-dielectric multilayer (MDML) structure is analysed numerically. For numerical analysis the method of single expression (MSE) is used. Derivation of MSE equations for analyzing TM polarized wave incident on a multilayer structure is presented. First, for validation, an excitation of SPs in conventional Kretschmann configuration with single silver layer is analysed. Further, four possible combinations of MDML \(\hbox {(silver/SiO}_\mathrm{2})\) structures of different alternation of outermost layers are analysed on the subject of SPs excitation. It is obtained that MDML structures can support SPs at specific number of layers, when the total thickness of metallic layers in MDML structure is less than the thickness of single metallic layer in conventional Kretschmann configuration. It is found, that specific angles of SPs excitation for MDML structures are greater than that for conventional Kretschmann configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alam, M.Z., Meier, J., Aitchison, J.S., Mojahedi, M.: Gain assisted surface plasmon polariton in quantum wells structures. Opt. Express 15, 176 (2007)

    Article  ADS  Google Scholar 

  • Ambati, M., et al.: Observation of stimulated emission of surface plasmon polaritons. Nano Lett. 2008, 3998 (2008)

    Article  ADS  Google Scholar 

  • Avrutsky, I.: Gain-assisted nanoscale surface plasmons. In: QELS 2005 Conference, JTuC107, 1097 (2005)

  • Avrutsky, I., Salakhutdinov, I., Elser, J., Podolskiy, V.: Highly confined optical modes in nanoscale metal-dielectric multilayers. Phys. Rev. B 75, 241402 (2007)

    Article  ADS  Google Scholar 

  • Baghdasaryan, H.V.: Method of backward calculation, in the book. In: Guekos, G. (ed.) Photonic Devices for Telecommunications: How to Model and Measure. Springer, Berlin, pp. 56–65 (1999)

  • Baghdasaryan, H.V., Knyazyan, T.M.: Problem of plane EM wave self-action in multilayer structure: an exact solution. Opt. Quantum Electron. 31, 1059 (1999)

    Article  Google Scholar 

  • Baghdasaryan, H.V., Knyazyan, T.M., Eyramjyan, G.G.: Electrodynamical analysis of a transmittive metal-dielectric microstructure by the method of single expression. Proc. Eur. Microw. Assoc. 4, 76 (2008)

    Google Scholar 

  • Baghdasaryan, H.V., Knyazyan, T.M., Baghdasaryan, T.H., Witzigmann, B., Roemer, F.: Absorption loss influence on optical characteristics of multilayer distributed Bragg reflector: wavelength-scale analysis by the method of single expression. Opto-Electron. Rev. 18, 438 (2010a)

    Article  ADS  Google Scholar 

  • Baghdasaryan, H.V., Knyazyan, T.M., Hovhannisyan, T.T., Marciniak, M.: Wavelength-scale analysis of optical field localisation at plasmonic resonance in non-linear Kretschmann structure by the method of single expression. In: Proceedings ICTON 2010, Munich, Germany, June 27- July 1, Mo.C2.4 (2010b)

  • Baghdasaryan, H.V., Knyazyan, T.M., Hovhannisyan, T.T., Marciniak, M.: Peculiarities of surface plasmon excitation in amplifying Kretschmann structure: correct wavelength-scale analysis by the method of single expression. In: Proceedings of ICTON 2011, Stockholm, Sweden, Jun. 26–30, Mo.C2.5 (2011a)

  • Baghdasaryan, H.V., Knyazyan, T.M., Hovhannisyan, T.T., Marciniak, M.: Waveguiding characteristics of \(\text{ SiO }_{\rm 2}\) cover layer upon Kretschmann structure: numerical analysis by the method of single expression. In: Proceedings of International Conference Information Photonics, Ottawa, Canada, pp. 18–20. (2011b)

  • Baghdasaryan, H.V., Knyazyan, T.M., Hovhannisyan, T.T., Marciniak, M.: Analysis of surface plasmons excitation in Kretschmann structure at waveguiding, amplifying and nonlinear cover layer by the method of single expression. In: Proceedings of MINAP 2012, Trento, Italy, Jan. 16–18, pp. 77–80 (2012a)

  • Baghdasaryan, H.V., Knyazyan, T.M., Hovhannisyan, T.T., Marciniak, M.: Surface plasmon interaction with amplifying MQWs in multilayer Kretschmann structure: wavelength-scale analysis by the method of single expression. In: Proceedings ICTON 2012, Coventry, UK, July 2–5, Tu.A5.5 (2012b)

  • Baghdasaryan, H.V.: Basics of the Method of Single Expression: New Approach for Solving Boundary Problems in Classical Electrodynamics. Chartaraget, Yerevan (2013)

    Google Scholar 

  • Barnes, W.L.: Surface plasmon-polariton length scales: a route to sub-wavelength optics. J. Opt. A: Pure Appl. Opt. 8, S87 (2006)

    Article  ADS  Google Scholar 

  • Bolger, P.M., et al.: Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length. Opt. Lett. 35, 1197 (2010)

    Article  ADS  Google Scholar 

  • Boltasseva, A., Atwater, H.A.: Low-loss plasmonic metamaterials. Science 331, 290 (2011)

    Article  ADS  Google Scholar 

  • Born, M., Wolf, E.: Principles of Optics. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  • Brongersma, M.L., Kik, P.G. (eds.) Surface Plasmon Nanophotonics. Springer, Berlin (2007)

  • Chu, H.-S., et al.: Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components. Appl. Phys. Lett. 96, 221103 (2010)

    Article  ADS  Google Scholar 

  • De Leon, I., Berini, P.: Amplification of long-range surface plasmons by a dipolar gain medium. Nat. Photon. 37, 1 (2010)

    Google Scholar 

  • Fox, L.: Numerical Solution of Ordinary and Partial Differential Equations. Pergamon Press, NY (1962)

    MATH  Google Scholar 

  • Frisbie, S.P., et al.: Optical reflectivity of asymmetric dielectric- metal- dielectric planar structures. J. Lightw. Technol. 27, 2964 (2009)

    Article  ADS  Google Scholar 

  • Gan, C.H., Lalanne, P.: Well-confined surface plasmon polaritons for sensing applications in the near-infrared. Opt. Lett. 35, 610 (2010)

    Article  ADS  Google Scholar 

  • Gaponenko, S.V.: Introduction to Nanophotonics. Cambridge University Press, New-York (2010)

    Book  Google Scholar 

  • García-Blanco, S.M. et al.: Loss Compensation in Metal-Loaded Hybrid Plasmonic Waveguides Using Yb3+Potassium Double Tungstate Gain Materials. In: ICTON 2012, Tu.A5.2 (2012)

  • Gather, M.C., et al.: Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer. Nat. Photon. 4, 457 (2010)

    Article  ADS  Google Scholar 

  • Genov, D.A., Ambati, M., Zhang, X.: Surface plasmon amplification in planar metal films. IEEE J. Quantum Electron. 43, 1104 (2007)

    Article  ADS  Google Scholar 

  • Grandidier, J., et al.: Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip. Appl. Phys. Lett. 96, 063105 (2010)

    Article  ADS  Google Scholar 

  • Heavens, O.S.: Optical Properties of Thin Solid Films. Dover Publications Inc, NY (1991)

    Google Scholar 

  • Hoa, X.D., Kirk, A.G., Tabrizian, M.: Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosensors Bioelectron. 23, 151 (2007)

    Article  Google Scholar 

  • Holmgaard, T., Bozhevolnyi, S.I.: Dielectric-loaded surface plasmon- polariton waveguides at telecommunication wavelengths: excitation and characterization. Appl. Phys. Lett. 92, 011124 (2008)

    Article  ADS  Google Scholar 

  • Homola, J.: Surface Plasmon Resonance Based Sensors. Springer, Berlin (2006)

    Book  Google Scholar 

  • Homola, J.: Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108, 462 (2008)

    Article  Google Scholar 

  • Huang, Y., Min, C., Yang, L., Veronis, G.: Nanoscale plasmonic devices based on metal-dielectric-metal stub resonators. Int. J. Opt. (2012), Article ID 372048

  • Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  • Kim, J.T.: CMOS-compatible hybrid plasmonic waveguide for subwavelength light confinement and on-chip integration. IEEE Photon. Technol. Lett. 23, 206 (2011)

    Article  Google Scholar 

  • Krasavin, A.V., Zayats, A.V.: Passive photonic elements based on dielectric-loaded plasmon polariton waveguides. Appl. Phys. Lett. 90, 211101 (2007)

    Article  ADS  Google Scholar 

  • Kretschmann, E.: Determination of optical constants of metals through the stimulation of surface plasma oscillations. Z. Phys. 241, 313 (1971)

    Article  ADS  Google Scholar 

  • Kwong, W.-Y.: High system performance with plasmonic waveguides and functional devices. ETRI J. 32, 319 (2010)

    Article  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media. Pergamon Press, NY (1989)

    Google Scholar 

  • Liddell, H.M.: Computer-Aided Techniques for the Design of Multilayer Filters. Arrowsmith Ltd., Bristol, p. 6 (1981)

  • Luk, T.S., et al.: Near-infrared surface plasmon polariton dispersion control with hyperbolic metamaterials. Opt. Express 21, 11107 (2013)

    Article  ADS  Google Scholar 

  • Maier, S.A.: Plasmonics: the promise of highly integrated optical devices. IEEE JSTQE 12, 1671 (2006a)

    Google Scholar 

  • Maier, S.A.: Plasmonics Fundamentals and Applications. Springer, Berlin (2006b)

    Google Scholar 

  • Massenot, S., et al.: Differential method for modeling dielectric-loaded surface plasmon polariton waveguides. Opt. Express 16, 17599 (2008)

    Article  ADS  Google Scholar 

  • Naik, G.V., Kim, J., Boltasseva, A.: Oxides and nitrides as alternative plasmonic materials in the optical range. Opt. Mater. Express 1, 1090 (2011)

    Article  Google Scholar 

  • Naik, G.V., et al.: Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2, 478 (2012)

    Article  Google Scholar 

  • Noginov, M.A., et al.: Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium. Opt. Express 16, 1385 (2008)

    Article  ADS  Google Scholar 

  • Novotny, L., Hecht, B.: Principles of Nano-Optics. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  • Otto, A.: Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 216, 398 (1968)

    Article  ADS  Google Scholar 

  • Prasad, P.N.: Nanophotonics. Wiley, Canada (2004)

    Book  Google Scholar 

  • Raether, H.: Surface Plasmons, vol. 111. Springer, Berlin (1988)

    Google Scholar 

  • Roh, S., Chung, T., Lee, B.: Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors. Sensors 11, 1565 (2011)

    Article  Google Scholar 

  • Sarid, D., Challener, W: Modern Introduction to Surface Plasmons. Cambridge (2010)

  • Shalaev, V.M., Kawata, S.: Nanophotonics with Surface Plasmons. Elsevier, Amsterdam (2007)

    Google Scholar 

  • Simon, H.J., Mitchel, D.E., Watson, J.G.: Surface plasmons in silver films—a novel undergraduate experiment. Am. J. Phys. 43, 630–636 (1975)

    Article  ADS  Google Scholar 

  • Stratton, J.A.: Electromagnetic Theory, 1st edn. McGraw-Hill, New York, p. 496 (1941)

  • Vasichek, A.: Optics of Thin Films. North-Holland, Amsterdam (1960)

    Google Scholar 

  • Volkov, V.S., et al.: Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths. Opt. Lett. 36, 4278 (2011)

    Article  ADS  Google Scholar 

  • West, P.R., et al.: Searching for better plasmonic materials. Laser Photon. Rev. 4, 795 (2010)

    Article  Google Scholar 

  • Wolf, E.L.: Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience. Willey & VCH Verlag GmbH&Co. KgaA (2006)

  • Wosinski, L., Lou, F., Thylén, L.: Nanoscale Si-Based Photonics for Next Generation Integrated Circuits. In: ICTON 2013, We.C2.3, (2013)

  • Yang, R., et al.: Arbitrary super surface modes bounded by multilayered metamaterials. Micromachines 3, 45 (2012)

    Article  Google Scholar 

  • Yang, R., Lu, Z.: Subwavelength plasmonic waveguides and plasmonic materials. Int. J. Opt., Article ID 258013 (2012)

  • Zia, R., Selker, M.D., Brongersma, M.L.: Leaky and bound modes of surface plasmon waveguides. Phys. Rev. B 71, 165431 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank COST Action MP0702 “Towards Functional Sub-Wavelength Photonic Structures” for stimulating discussions. Authors also thankful for support provided by Armenian grant 13-2J204 of State Committee of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. V. Baghdasaryan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghdasaryan, H.V., Knyazyan, T.M., Hovhannisyan, T.T. et al. Metal-dielectric multilayer structure supporting surface plasmons: electromagnetic modelling by the method of single expression. Opt Quant Electron 47, 3–15 (2015). https://doi.org/10.1007/s11082-014-0003-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-014-0003-3

Keywords

Navigation